Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T12:10:59.188Z Has data issue: false hasContentIssue false

Fabrication of Highly-ordered and Densely-spaced Silicon Nano-needle Arrays for Bio-sensing Applications

Published online by Cambridge University Press:  01 February 2011

Aijun Yin
Affiliation:
[email protected], Brown University, Division of Engineering, 182 Hope St., Providence, RI, 02912, United States, 4018632447
Jimmy Xu
Affiliation:
[email protected], Brown University, Division of Engineering, United States
Get access

Abstract

In this work, we report a success in fabricating highly-ordered and densely-packed array of silicon nano-needles that are vertically aligned, straight and long, meeting many of the requirements for biomolecular sensing and integration with silicon electronics. Yet, we show that they can be fabricated with a relatively simple and non-lithographic method.

In this approach the array of nano-needles of high uniformity in length and diameter are made out of silicon by reactive ion etching (RIE) through either an anodic aluminum oxide (AAO) membrane or an array of metallic nano-dot caps that are evaporated on a silicon wafer using an AAO membrane as mask. The AAO membrane itself is formed non-lithographically via anodization of pure aluminum foil and contains an array of highly-ordered and highly-uniform nano-pores. By using the AAO membrane either directly as an etching mask or as an evaporation mask to deposit metallic nanodots which in turn serve as an etching mask, deep and high aspect-ratio etching is possible to allow the formation of the nanoneedles in a Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Poborechii, V. V., Tada, T., Kanayama, T., Appl. Phys. Lett. 75, 3276(1999).Google Scholar
2. Wanke, M. C., Lehmann, O., Muller, K., Wen, Q. Z., Stuke, M., Science, 275, 1284(1997).Google Scholar
3. Haes, A. J., Van Duyne, R. P., J. Am. Chem. Soc., 124, 10596(2002).Google Scholar
4. Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C., Mrksich, M., Science, 295, 1702(2002).Google Scholar
5. Cui, Y., Wei, Q. Q., Park, H. K., Lieber, C. M., Science, 293, 1289(2001).Google Scholar
6. Rebohle, L., Gebel, T., Yankov, R.A., Trautmann, T., Skorupa, W., Sun, J., Gauglitz, G., and Frank, R., Opt. Mater., 27, 1055(2005).Google Scholar
7. Saitou, N., Int. J. Jpn. Soc. Precis. Eng., 30, 107111(1996).Google Scholar
8. Matsui, S., Ochiai, Y., Nanotechnol., 7, 247258(1996).Google Scholar
9. Hamley, I. W., Angew. Chem., Int. Ed., 42, 16921712(2003).Google Scholar
10. Gates, B. D., Xu, Q., Love, J. C., Wolfe, D. B., Whitesides, G. M., Annu. Rev. Mater. Res., 34, 339(2004).Google Scholar
11. Suh, K. Y., Choi, S. J., Baek, S. J., Kim, T. W., Langer, R., Adv. Mater., 17, 560(2005).Google Scholar
12. Masuda, H., Yasui, K., and Nishio, K., Adv. Mater., 12, 1031(2000).Google Scholar
13. Kanamori, Y., Hane, K., Sai, H., and Yugami, H., Appl. Phys. Lett., 78, 142(2001).Google Scholar
14. Liang, J., Chik, H., Yin, A., and Xu, J., J. Appl. Phys., 91, 2544(2002).Google Scholar
15. Lei, Y., Chim, W. K., Weissmuller, J., Wilde, G., Sun, H. P., and Pan, X. Q., Nanotechnol., 16, 1892(2005).Google Scholar
16. Masuda, H. and Fukuda, K., Science, 268, 1466(1995).Google Scholar