Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:09:24.406Z Has data issue: false hasContentIssue false

Fabrication of Fluorescent Cellular Probes: Hybrid Dendrimer/Gold Nanoclusters

Published online by Cambridge University Press:  17 March 2011

Chang Zhong
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, MS K771, Los Alamos, NM, 87544
Yuping Bao
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, MS K771, Los Alamos, NM, 87544
Dung M. Vu
Affiliation:
Physical Chem & Applied Spectroscopy, Los Alamos National Laboratory, MS J567, Los Alamos, NM, 87544
R. Brian Dyer
Affiliation:
Physical Chem & Applied Spectroscopy, Los Alamos National Laboratory, MS J567, Los Alamos, NM, 87544
Jennifer S. Martinez
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, MS K771, Los Alamos, NM, 87544
Get access

Abstract

Fluorescent metal nanoclusters, which consist of collections of small numbers of noble metal atoms, are of great interest in photochemistry and photophysics due to their strong size-dependent emission. Historically their generation was confined to gaseous and solid phases; however, recently a unique organic/inorganic hybrid materials approach was developed that utilizes dendrimers as templates to protect nanoclusters from solution based fluorescence quenching. These hybrid dendrimer/gold nanoclusters are water-soluble and highly fluorescent. Yet there are several intrinsic deficiencies in their synthetic method: first, NaBH4, a toxic chemical, was used as reducing agent in the reaction; and second, the reaction yield was low due to the concurrent formation of large, non-emissive, gold particles. Here we report a particle-free method to produce dendrimer-encapsulated gold nanoclusters in high-yield. Proof of concept is demonstrated using OH-terminated poly(amidoamine) dendrimer and Au(PX3)3Cl (X = Ph, Me), but the approach can also be extended to the combination of other dendrimers and organic noble metal salts. Our approach yields fluorescent clusters with homogeneous size distribution. These clusters can be transferred to aqueous solution and used directly for biological applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alivisatos, P., Nat. Biotechnol. 22 (1), 47 (2004); M. Bruchez, M. Moronne, P. Gin et al., Science 281 (5385), 2013 (1998); P. V. Kamat, J. Phys. Chem. B 106 (32), 7729 (2002); G. D. Liu, T. M. H. Lee, and J. S. Wang, J. Am. Chem. Soc. 127 (1), 38 (2005); C. A. Mirkin, Inorg. Chem. 39 (11), 2258 (2000).Google Scholar
2. Alivisatos, A. P., Gu, W. W., and Larabell, C., Annu. Rev. Biomed. Eng. 7, 55 (2005); J. K. Jaiswal and S. M. Simon, Trends Cell Biol. 14 (9), 497 (2004).Google Scholar
3. El-Sayed, M. A., Acc. Chem. Res. 34 (4), 257 (2001); S. Empedocles and M. Bawendi, Acc. Chem. Res. 32 (5), 389 (1999).Google Scholar
4. Ozin, G. A. and Mitchell, S. A., Angew. Chem. Int. Ed. 22 (9), 674 (1983); R. M. Crooks, M. Zhao, L. Sun et al., Acc. Chem. Res. 34 (3), 181 (2001); Jun Li, Xi Li, Hua-Jin Zhai et al., Science 299 (5608), 864 (2003); J. G. Zhang, S. Q. Xu, and E. Kumacheva, Adv. Mater. 17 (19), 2336 (2005).Google Scholar
5. Jin, R. C., Egusa, S., and Scherer, N. F., J. Am. Chem. Soc. 126 (32), 9900 (2004); Y. Negishi and T. Tsukuda, Chem. Phys. Lett. 383 (1-2), 161 (2004); J. P. Wilcoxon, J. E. Martin, F. Parsapour et al., J. Chem. Phys. 108 (21), 9137 (1998); S. Link, A. Beeby, S. Fitzgerald et al., J. Phys. Chem. B 106 (13), 3410 (2002); Y. Negishi, Y. Takasugi, S. Sato et al., J. Am. Chem. Soc. 126 (21), 6518 (2004); M. F. Bertino, Z. M. Sun, R. Zhang et al., J. Phys. Chem. B 110 (43), 21416 (2006).Google Scholar
6. Zheng, J., Petty, J. T., and Dickson, R. M., J. Am. Chem. Soc. 125 (26), 7780 (2003).Google Scholar
7. Zheng, J., Zhang, C. W., and Dickson, R. M., Phys. Rev. Lett. 93 (7), 077402 (2004).Google Scholar
8. Triulzi, R. C., Micic, M., Giordani, S. et al., Chem. Commun. (48), 5068 (2006).Google Scholar
9. Bao, Y., Zhong, C., Vu, D. et al., J. Phys. Chem. C, submitted (2007).Google Scholar
10. Tran, M. L., Zvyagin, A. V., and Plakhotnik, T., Chem. Commun. (22), 2400 (2006).Google Scholar
11. Wang, D. J. and Imae, T., J. Am. Chem. Soc. 126 (41), 13204 (2004).Google Scholar
12. Zhao, M. Q., Sun, L., and Crooks, R. M., J. Am. Chem. Soc. 120 (19), 4877 (1998).Google Scholar
13. Shichibu, Y., Negishi, Y., Tsukuda, T. et al., J. Am. Chem. Soc. 127 (39), 13464 (2005).Google Scholar
14. Quinn, M. and Mills, G., J. Phys. Chem. 98 (39), 9840 (1994); K. Esumi, T. Hosoya, A. Suzuki et al., Langmuir 16 (6), 2978 (2000).Google Scholar
15. Schonauer, D., Lauer, H., and Kreibig, U., Zeitschrift fur Physik D (Atoms, Molecules and Clusters) 20 (1/4), 301 (1991).Google Scholar
16. Pankau, W. M., Verbist, K., and Kiedrowski, G. von, Chem. Commun. (6), 519 (2001).Google Scholar