Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:36:44.937Z Has data issue: false hasContentIssue false

Fabrication of Crystalline Semiconductor Nanowires by Vapor-Liquid-Solid Glancing Angle Deposition (VLS-GLAD) Technique

Published online by Cambridge University Press:  30 June 2011

Arif S. Alagoz
Affiliation:
Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204, U.S.A.
Tansel Karabacak
Affiliation:
Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204, U.S.A.
Get access

Abstract

Vapor-liquid-solid (VLS) method has become one of the few and most powerful bottom-up single crystal nanowire growth techniques in nanotechnology due to its easy scalability from micro to nano feature sizes, high throughput, relatively low cost, and its applicability to various semiconductor materials. On the other hand, control of growth direction and crystal orientation of nanowires, which determine their electrical, optical, and mechanical properties, stand as major issues in VLS technique. In this study, we demonstrate a new vapor-liquid-solid glancing angle deposition (VLS-GLAD) fabrication approach to produce crystalline semiconductor nanowires with controlled geometry. VLS-GLAD is a physical vapor deposition nanowire fabrication approach based on selective deposition of nanowire source atoms onto metal catalyst nanoislands placed on a crystal wafer. In this technique, collimated obliquely incident flux of source atoms selectively deposit on catalyst islands by using “shadowing effect”. Geometrical showing effect combined with conventional VLS growth mechanism leads to the growth of tilted crystalline semiconductor nanowire arrays. In this study, we report morphological and structural properties of tilted single crystal germanium nanowire arrays fabricated by utilizing a conventional thermal evaporation system. In addition to the tilted geometry, by introducing substrate rotation, nanowires with various morphologies including helical, zig-zag, or vertical shapes can be fabricated. Engineering crystalline nanowire morphology by using VLS-GLAD have the potential of enabling control of optical, electrical, and mechanical properties of these nanostructures leading to the development of novel 3D nano-devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alivisatos, A. P., Science 271, 5251 (1996).Google Scholar
2. Schmidt, V., Wittemann, J. V., Senz, S., and Gosele, U., Adv Mater 21, 2526 (2009).Google Scholar
3. Geim, A. K., Science 324, 5934 (2009).Google Scholar
4. Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett. 4, 5 (1964).Google Scholar
5. Wagner, R. S., and Ellis, W. C., Transactions of the Metallurgical Society of Aime 233, 6 (1965).Google Scholar
6. Wagner, R. S., and Doherty, C. J., J. Electrochem. Soc. 113, 12 (1966).Google Scholar
7. Morales, A. M., and Lieber, C. M., Science 279, 5348 (1998).Google Scholar
8. Wang, X. D., Song, J. H., Liu, J., and Wang, Z. L., Science 316, 5821 (2007).Google Scholar
9. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F., and Lieber, C. M., Nature 409, 6816 (2001).Google Scholar
10. Wang, J. F., Gudiksen, M. S., Duan, X. F., Cui, Y., and Lieber, C. M., Science 293, 5534 (2001).Google Scholar
11. Cui, Y., and Lieber, C. M., Science 291, 5505 (2001).Google Scholar
12. Huang, Y., Duan, X. F., Cui, Y., Lauhon, L. J., Kim, K. H., and Lieber, C. M., Science 294, 5545 (2001).Google Scholar
13. Cui, Y., Wei, Q. Q., Park, H. K., and Lieber, C. M., Science 293, 5533 (2001).Google Scholar
14. Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P. D., Nature Materials 4, 6 (2005).Google Scholar
15. Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., Sulima, O., and Rand, J., Appl. Phys. Lett. 91, 23 (2007).Google Scholar
16. Kelzenberg, M. D., Turner-Evans, D. B., Kayes, B. M., Filler, M. A., Putnam, M. C., Lewis, N. S., and Atwater, H. A., Nano Letters 8, 2 (2008).Google Scholar
17. Willander, M., Nur, O., Zhao, Q. X., Yang, L. L., Lorenz, M., Cao, B. Q., Perez, J. Z., Czekalla, C., Zimmermann, G., Grundmann, M., Bakin, A., Behrends, A., Al-Suleiman, M., El-Shaer, A., Mofor, A. C., Postels, B., Waag, A., Boukos, N., Travlos, A., Kwack, H. S., Guinard, J., and Dang, D. L. S., Nanotechnology 20, 33 (2009).Google Scholar
18. Robbie, K., and Brett, M. J., Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films 15, 3 (1997).Google Scholar
19. Karabacak, T., Singh, J. P., Zhao, Y. P., Wang, G. C., and Lu, T. M., Phys. Rev. B 68, 12 (2003).Google Scholar
20. Singh, J. P., Karabacak, T., Ye, D. X., Liu, D. L., Picu, C., Lu, T. M., and Wang, G. C., J. Vac. Sci. Technol. B 23, 5 (2005).Google Scholar
21. Choi, W. K., Li, L., Chew, H. G., and Zheng, F., Nanotechnology 18, 38 (2007).Google Scholar
22. Patzig, C., and Rauschenbach, B., Journal of Vacuum Science & Technology a 26, 4 (2008).Google Scholar
23. Chang, C. H., Yu, P., and Yang, C. S., Appl. Phys. Lett. 94, 5 (2009).Google Scholar
24. Zhang, H. X., and Feng, P. X., Journal of Physics D-Applied Physics 42, 2 (2009).Google Scholar
25. Haynes, C. L., and Van Duyne, R. P., J Phys Chem B 105, 24 (2001).Google Scholar
26. Prevo, B. G., Kuncicky, D. M., and Velev, O. D., Colloids and Surfaces A-Physicochemical and Engineering Aspects 311, 13 (2007).Google Scholar