Published online by Cambridge University Press: 15 February 2011
Lasting storage of hydrogen, its isotopes and other gases under high (1–2 thousand atm) pressure inside hollow microspheres as well as production of low-density syntaxis poroplasts to withstand high external loads - all these need hollow microspheres of high mechanical strength. By modern commercial technology the microspheres are mainly obtained from water- soluble alkali-silicate or alkali-boro-silicate glasses. These microspheres are not strong, their strength being 1000–1500 MPa.. Besides the low resistivity to hydrolysis and chemicals also restrict their applications. To gain strength 1.5–2 times higher the additional modification of microspheres is done either by leaching, or by annealing, or by ion exchange. Microspheres of stronger glasses being usually multi-component require a technology fitted to produce highly uniform glass [1,2].
A new fabrication method is presented to produce hollow microspheres of various glasses. They include simple alkali and alkali-boro-silicate glasses as well as multi-component glasses of commercially available compositions, alkali-free, refractory, and high-strength glasses.