Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:24:08.590Z Has data issue: false hasContentIssue false

Fabrication and Optical Characterization of Silicon Carbide Nanofibers

Published online by Cambridge University Press:  01 February 2011

Saima Khan
Affiliation:
[email protected], Ohio University, Physics & Astronomy, ., Athens, OH, 45701, United States
Aurangzeb Khan
Affiliation:
[email protected], Ohio University, Physics & Astronomy, Athens, OH, 45701, United States
Martin E. Kordesch
Affiliation:
[email protected], Ohio University, Physics & Astronomy, Athens, OH, 45701, United States
Get access

Abstract

Silicon Carbide (SiC) nanofibers were synthesized from SiC powder dispersed in polyethylene oxide (PEO) solution in Chloroform using the electrospinning technique. The as-spun fibers were then annealed at 1000ËC to 7 hours. The average diameter of the annealed fibers is 500 nm while the length of the annealed fibers is about 50 µm. The fibers were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) and Cathodoluminescence (CL). PL spectra from the annealed SiC fibers show a broad emission in the red-infrared spectral regime. The main peak is centered at 774 nm while the shoulder on the left is at 740 nm

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Powell, J. A., Matus, L. G., Kuczmarski, M. A., Electrochem, A. J.. Soc. 134, 1558, (1998).Google Scholar
[2] Choyke, W. J., Penske, G., Mater. Res. Soc. Bull. 22, 25, (1997).Google Scholar
[3] Larkin, D. J., Mater. Res. Soc. Bull. 22, 36, (1997).Google Scholar
[4] KAMLAKARAN, R., LUPO, F., GROBERT, N., SCHEU, T., PHILLIPP, N. Y. J. and RUHLE, M., Carbon 42,1 (2004).Google Scholar
[5] Kamlakaran, R., Lupo, F., Grobert, N., Scheu, T., Phillip, N.Y.J. and Ruhle, M., Carbon 42, 1 (2004).Google Scholar
[6] Raman, V., Bhatia, G., Bhardwaj, S., Srivastva, A. K., Sood, K. N., Journal of materials science 40, 15211527, (2005).Google Scholar
[7] Fisher, A., Schroter, B., Richter, W., Appl. Phys. Lett. 66 (23), 3182, (1995).Google Scholar
[8] Feng, Z. C., Mascarenhas, A. J., Choyke, W. J., Powell, J. A., J. Appl. Phys. 64, 3176, (1998).Google Scholar
[9] Dai, H., Wang, E. W., Lu, Y. Z., Fan, S., Lieber, C. M., Nature 375, 769 (1995).Google Scholar
[10] Wu, Z. S., Deng, S. Z., Xu, N. S., Chen, J., Zhou, J., Chen, , J. Appl. Phys. Lett. 80, 3829 (2002).Google Scholar
[11] Zhou, X. T., Lai, H. L., Peng, H. Y., Frederick, C. K. A., Liao, L.S., Wang, N., Bello, I., Chem. Phys. Lett. 318, 58 (2000).Google Scholar
[12] Zhou, X. T., Wang, N., Frederick, C. K. A., Lai, H. L., Peng, H. Y., Bello, I., Lee, C. S., Lee, S. T., Mater. Sci. Eng., A 2000, 286, 119 (A 2000).Google Scholar
[13] Lai, H. L., Wong, N. B., Zhou, X. T., Peng, H. Y., Au, F. C. K., Wang, N., Bello, I., Lee, C. S., Lee, S. T., Duan, X. F., Appl. Phys. Lett., 76, 294 (2000).Google Scholar
[14] Wong, K.W., Zhou, T., Au, C.K., Lai, H.L., Lee, C.S., Lee, S.T., Appl.Phys.Lett. 75, 2918. (1999).Google Scholar
[15] , Shin.ichi-Honda, Baek, Yang-Gyu, Ikunu, Takashi, Kohara, Hidekazu, Katayama, Mitsuhiro, Oura, Kinjiru, Takashi Hirao Applied Surface Science 212-213, 378382 (2003).Google Scholar
[16] Liu, J. W., Zhong, D. Y., Xie, F. Q., Sun, M., Wang, E.G., Liu, W. X. Chemical Physics Letters 348, 357360 (2001).Google Scholar
[17] Patel, N., Kawal, R., Oya, A. Journal of materials science 39, 691693 (2004).Google Scholar
[18] Ishikawa, T., Kohtoku, Y., , Kumagawa, Yamamura, T., Nagasawa, T., Nature 391, 773 (1998).Google Scholar
[19] Khan, A. and Kordesch, M. E., Journal of Physics D: Applied Physics, Submitted 2007.Google Scholar