Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:49:59.515Z Has data issue: false hasContentIssue false

Fabrication and Magneto-Capacitance Measurements of PbNb0.02Zr0.2Ti0.8O3/La0.7Sr0.3MnO3/SiO2/Si Structure Grown by Chemical Solution Deposition

Published online by Cambridge University Press:  31 January 2011

Sushma Kotru
Affiliation:
[email protected]@bama.ua.edu, The University of Alabama, ECE, 317 Houser Hall, P.O.Box 870286, Tuscaloosa, Alabama, 35406, United States, 205-349-4792, 205-348-6959
Harshan V. Nampoori
Affiliation:
[email protected], The University of Alabama, Department of Electrical and Computer Engineering, Tuscaloosa, Alabama, United States
Get access

Abstract

Multiferroic composite thin films consisting of PbNb0.02Zr0.2Ti0.8O3 (PNZT) and La0.7 Sr0.3 MnO3 (LSMO) were deposited on SiO2/Si substrates. SiO2 films were deposited by pulsed electron deposition and LSMO and PNZT films were prepared using chemical solution deposition process using a metal organic deposition route. Individual films and the test structure PNZT/LSMO/ SiO2/Si were characterized using various characterizing techniques. Preliminary results of magnetic field dependent capacitance (magneto-capacitance) on the test structure are reported. A change in capacitance from 18.92 pf to 5.49 pf is observed as frequency changes from 50 KHz to 1 MHz, when no external magnetic field is applied. When a magnetic field of 330 Oe (positive or negative) is applied, the change in magneto-capacitance is appreciable, with a maximum change of 37 % being observed at a frequency of 1 MHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Scott, J. F. Nature Materials, 6 (2007) 256257.Google Scholar
[2] Eerenstein, W. Mathur, N. D. Scott, J. F. Nature, 442 (2006) 759765.Google Scholar
[3] Hill, N. A. Journal of Physical Chemistry B, 104 (2000) 66946709.Google Scholar
[4] Fiebig, M. Journal of Physics D-Applied Physics, 38 (2005) R123-R152.Google Scholar
[5] Ramesh, R. Spaldin, N. A. Nature Materials, 6 (2007) 2129.Google Scholar
[6] Srinivasan, G. Rasmussen, E. T. Levin, B. J. Hayes, R. Physical Review B, 65 (2002).Google Scholar
[7] Kwok, K. W. Tsang, R. C. W., Chan, H. L. W., Choy, C. L. Journal of Applied Physics, 95 (2004) 13721376.Google Scholar
[8] Haccart, T. Cattan, E. Remiens, D. Hiboux, S. Muralt, P. Applied Physics Letters, 76 (2000) 32923294.Google Scholar
[9] Choudhary, R. J. Ogale, S. B. Shinde, S. R. Kulkarni, V. N. Venkatesan, T. Harshavardhan, K. S., Strikovski, M. Hannoyer, B. Applied Physics Letters 84 (2004) 14831485.Google Scholar
[10] Lange, F. F. Science, 273 (1996) 903909.Google Scholar
[11] Urushibara, A. Moritomo, Y. Arima, T. Asamitsu, A. Kido, G. Tokura, Y. Physical Review, B 51 (1995) 14103.Google Scholar
[12] Han, H. Song, X. Y. Zhong, J. Kotru, S. Padmini, P. Pandey, R. K. Applied Physics Letters, 85 (2004) 5310–5Google Scholar
[13] Han, H. Kotru, S. Zhong, H. Pandey, R. K. Infrared Physics & Technology, 51 (2008) 216220.Google Scholar
[14] Liu, S. M. Zhu, X. B. Yang, J. Song, W. H. Dai, J. M. Sun, Y. P. Ceramics International, 32 (2006) 157162.Google Scholar
[15] Huang, A. Yao, K. Wang, J. Thin Solid Films, 516 (2008) 50575061.Google Scholar
[16] Zhang, J. X. Dai, J. Y. Lu, W. H. L. Chan, W. Wu, B. Li, D. X. Journal of Physics D: Applied Physics, 41 (2008) 235405.Google Scholar
[17] Chaudhuri, A. R. Mandal, P. Krupanidhi, S. B. Sundaresan, A. Solid State Communications, 148 (2008) 566569.Google Scholar