Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:45:13.923Z Has data issue: false hasContentIssue false

Fabrication and electrical characteristics of Ti/Al ohmic contact to Si+ implanted GaN

Published online by Cambridge University Press:  01 February 2011

Nobuyuki Ito
Affiliation:
[email protected], Hosei University, ECEE, 3-7-2 Kajinocho, Koganei, Tokyo, 184-8584, Japan, +81-42-387-6091, +81-42-387-6095
Akira Suzuki
Affiliation:
[email protected], Hosei University, EECE, Japan
Mitsunori Kawamura
Affiliation:
[email protected], Hosei University, EECE, Japan
Kazuki Nomoto
Affiliation:
[email protected], Hosei University, EECE, Japan
Takeshi Kasai
Affiliation:
[email protected], Chemitronics, Japan
Tomoyoshi Mishima
Affiliation:
[email protected], Hitachi Cable, Japan
Taroh Inada
Affiliation:
[email protected], Hosei University, EECE, Japan
Tohru Nakamura
Affiliation:
[email protected], Hosei University, EECE, Japan
Masataka Satoh
Affiliation:
[email protected], Hosei University, EECE, Japan
Get access

Abstract

Ti/Al ohmic contact with an extremely low specific contact resistance has been formed by the deposition of Ti and Al films on Si+ lanted GaN. The ohmic contact formed by annealing at 600 o C of Ti film with a thickness of 50 nm and Al film with a thickness of 200 nm reveals the good smooth surface and uniform structure as compare to those of contacts formed above 700 °C, which is correlated to whether the Al-Ti alloy is melted during the annealing of ohmic contact or not. The specific contact resistance of 2 × 10-6Ω-cm2 is obtained for Si+ implanted GaN with a dose of 5 × 1013 cm-2. As Si ion dose increases to 5 × 1014 /cm2, the specific contact resistance is reduced to 2 × 10-8 Ω-cm2. It is revealed that the selective doping at high impurity concentration in the surface region by Si+ implantation is useful to reduce the contact resistance for Ti/Al contact to GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harima, H., J. Phys. Condens. Mater. 14, R967(2002).CrossRefGoogle Scholar
2. Wraback, M., Shen, H., Carrano, J. C., Li, T., Campbell, J. C., Schurman, M. J., and Ferguson, I. T., Appl. Phys. Lett. 76, 1155 (2000).CrossRefGoogle Scholar
3. Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., Allen, L. H., and Morkoc, H., Appl. Phys. Lett. 64, 1003(1994).CrossRefGoogle Scholar
4. Fan, Z., Mohammad, S. N., Kim, W., Aktas, O., Botchkarev, A. E., and Morkoc, H., Appl. Phys. Lett. 68, 1672(1996).CrossRefGoogle Scholar
5. Fellows, J. A., Yeo, Y. K., Hengehold, R. L., and Johnstone, D. K., Appl. Phys. Lett. 80, 1930(2002).CrossRefGoogle Scholar
6. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys. 86, 1(1999).CrossRefGoogle Scholar
7. Fellows, J.A., Yeo, Y.K., Hengehold, R.L., and Krasnobaev, L., in GaN and Related Alloys, edited by Northrup, J.E., Neugebauer, J., Look, D.C., Chichibu, S.F., and Riechert, H. (Mater. Res. Soc. Proc. 693, Pittsburgh, PA, 2002), p. 407.Google Scholar
8. Wang, H.T., Tan, L.S., and Chor, E.F., in New Applications for Wide-Bandgap Semiconductors, edited by Chyi, J.-I., Pearton, S.J., Han, J., Baca, A.G., Chang, W.H. (Mater. Res. Soc. Proc. 764, Pittsuburgh, PA, 2003), p. 271.Google Scholar
9. Burm, J., Chu, K., Davis, W.A., Schaff, J., Eastman, L.F., and Eustis, T. J., Appl. Phys. Lett. 70, 464(1997).CrossRefGoogle Scholar
10. Qiao, D., Guan, Z.F., Carlton, J., Lau, S.S., and Sullivan, G.J., Appl. Phys. Lett. 74, 2652(1999).CrossRefGoogle Scholar
11. Yu, H., McCarthy, L., Xing, H., Waltereit, H., Shen, L., Keller, S., Denbaars, S.P., Speck, J.S., and Mishra, u. K., Appl. Phys. Lett. 85, 5254(2004).CrossRefGoogle Scholar
12. The Stopping and Range of Ions In Matter, J. F. Ziegler (www.srim.org/SRIM)Google Scholar
13. Hansen, M., Constitution of Binary Alloys 2nd Ed. (McGraw-Hill, New York, 1958), pp. 139142.Google Scholar
14. Sze, S.M., Semiconductor Devices: Physics and Technology 2nd Ed. (John Wiely & Sons, New York, 2002), p. 235.Google Scholar
15. Bougrov, V., Levinshtein, M. E., Rumyantsev, S. L., Zubrilov, A. in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by Levinshtein, M. E., Rumyantsev, S. L., and Shur, M. S. (John Wiley & Sons, New York, 2001), pp. 130.Google Scholar