Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:12:42.492Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Spin-On Silica Xerogel Films

Published online by Cambridge University Press:  10 February 2011

S. Nitta
Affiliation:
Dept. of Chem. Engng., Rensselaer Polytechnic Institute, Troy, NY 12180
A. Jain
Affiliation:
Dept. of Chem. Engng., Rensselaer Polytechnic Institute, Troy, NY 12180
V. Pisupatti
Affiliation:
Dept. of Chem. Engng., Rensselaer Polytechnic Institute, Troy, NY 12180
W. N. Gill
Affiliation:
Dept. of Chem. Engng., Rensselaer Polytechnic Institute, Troy, NY 12180
P. C. Wayner Jr
Affiliation:
Dept. of Chem. Engng., Rensselaer Polytechnic Institute, Troy, NY 12180
J. L. Plawsky
Affiliation:
Dept. of Chem. Engng., Rensselaer Polytechnic Institute, Troy, NY 12180
Get access

Abstract

Xerogel films of high porosity were fabricated using an ambient pressure technique. The same porosity can be obtained with different microstructures by varying the aging time of the films. The dielectric constant of these films as a function of porosity at 1 MHz follows correlations originally developed for bulk aerogels. Diffusion of copper is orders of magnitude faster in these xerogels than in the corresponding thermal oxide. An activation energy of 0.9 eV was estimated based on a convective diffusion model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brinker, C. J., and Scherer, G. W., Sol-Gel Science, Academic Press, New York, (1990).Google Scholar
2. Hrubesh, L. H., and Poco, J. F., J. Non-Cryst. Solids, 188, 46, (1995).Google Scholar
3. Jo, M-H, Hong, J-K., Park, H-H., Kim, J-J., and Hyun, S-H., Microelectronic Engineering,33,343, (1997).Google Scholar
4. Jo, M-H., Hong, J-K., Park, H-H., Kim, J-J., Hyun, S-H., and Choi, S-Y., Thin Solid Films, 308,490, (1997).Google Scholar
5. Jo, M-H., Park, H-H., Kim, D-J., Hyun, S-H., Choi, S-Y., and Paik, J-T., J. Appl. Phys. 82, 1299, (1997).Google Scholar
6. Prakash, S. S., Brinker, C. J., Hurd, A. J., J. Non-Cryst. Solids, 190, 264, (1995).Google Scholar
7. Prakash, S. S., Brinker, C.J., Hurd, A.J., and Rao, S. M., Nature, 374,439, (1995).Google Scholar
8. List, R. S., Jin, C., Russell, S. W., Yamanaka, S., Olsen, L., Le, L., Ting, L. M., Havemann, R. H., (1997) Symposium on VLSI Tech. Digest of Tech. Papers, p. 7779.Google Scholar
9. Zielinski, E. M., Russell, S. W., List, R. S., Wilson, A. M., Jin, C., Newton, K. J., Lu, J. P., Hurd, T., Hsu, W. Y., Cordasco, V., Gopikanth, M., Korthuis, V., Lee, W., Cerny, G., Russell, N. M., Smith, P. B., O'Brien, S., and Havemann, R. H., IEDM 1997, p. 31.7.1–3.Google Scholar
10. Smith, D. M., Anderson, J., Cho, C. C., Johnston, G. P., and Jeng, S. P., Mat. Res. Soc. Symp. Proc., 381, 261, (1995).Google Scholar
11. Jin, C., Luttmer, J. D., Smith, D. M., and Ramos, A. T., MRS Bulletin, p. 3942, Oct. (1997).Google Scholar
12. Smith, D. M., Anderson, J., Cho, C-C., and Gnade, B. E., Mat. Res. Soc. Symp. Proc., 371, 261, (1995).Google Scholar
13. Yang, H-S, Choi, S-Y., Hyun, S-H., Park, H-H., and Hong, J-K., J. Non-Cryst. Solids, 221, 151, (1997).Google Scholar
14. Hong, J-K., Yang, H-S., Jo, M-H., Park, H-H., and Choi, S-Y., Thin Solid Films, 308,495, (1997).Google Scholar
15. Yamane, and Okano, S., Yogyo Kyokai-shi, 87, 56, (1979).Google Scholar
16. Davis, P. J., Brinker, C. J., and Smith, D. M., J. Non-Cryst. Solids, 142,189, (1992).Google Scholar
17. Haxreid, S., Anderson, J., Einarsrud, M. A., Hua, D. W., Smith, D. M., J. Non-Cryst. Solids, 185,221, (1995).Google Scholar
18. Hxreid, S., Nilsen, E., Ranum, V., and Einarsrud, M. A., J. Sol-Gel Sci. and Tech., 8,153, (1997).Google Scholar
19. MacBrayer, J. D., Swanson, R. M., and Sigmon, T. W., J. ElectrochemicalSociety, 133 1424, (1986).Google Scholar
20. Raghavan, G., Chiang, C., Anders, P. B., Tzeng, S., Villasol, R., Bai, G., Bohr, M. and Fraser, D. B., Thin Solid Films, 262, 168, (1995).Google Scholar
21. Shacham-Diamand, Y., Dedhia, A., Hoffstetter, D. and Oldham, W. G., J. Electrochemical Society, 140, 2427, (1993).Google Scholar
22. Gupta, D., Materials Chemistry and Physics, 41, 199, (1995).Google Scholar
23. Gupta, D., Vieregge, K. and K. V., , Appl. Phys. Lett., 61, 2178, (1992).Google Scholar
24. Faupel, F., Gupta, D., Silverman, B. D. and Ho, P. S., Appl. Phys. Lett., 55, 357, (1989).Google Scholar
25. Gupta, D., Faupel, F. and Willecke, R., in Jain, H. and Gupta, D. (eds.), Diffusion in Amorohous Materials, The Minerals, Metals and Matls. Soc., Warrendale. PA, 1994, p. 189.Google Scholar
26. Hrubesh, L. W., Keene, L. E. and Lattore, V. R., J. Materials Res., 8, No. 7, p. 1736, (1993).Google Scholar
27. Hrubesh, L. W., and Poco, J. F., Mat. Res. Symp. Proc. 371, 195, (1995).Google Scholar
28. Bruesch, P., Stucki, F., Baumann, Th., Kluge-Weiss, P., Bruhl, B., Niemeyer, L., Strumpler, R., Ziegler, B. and Mielke, M., J. Appl. Phys A, 57, 329, (1993).Google Scholar