Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:32:11.025Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Size- and Shape-Controlled C60 Nano/microcrystals by Solvent-Induced Reprecipitation Process (SIRP)

Published online by Cambridge University Press:  01 February 2011

Akito Masuhara
Affiliation:
[email protected], Tohoku university, IMRAM, Katahira, 2-1-1, Aobaku, Sendai, 980-8577, Japan, +81-22-217-5645, +81-22-217-5645
Zhenquan Tan
Affiliation:
[email protected], IMRAM, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Hitoshi Kasai
Affiliation:
[email protected], IMRAM, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Hachiro Nakanishi
Affiliation:
[email protected], IMRAM, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Hidetoshi Oikawa
Affiliation:
[email protected], IMRAM, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Get access

Abstract

We have first developed useful Solvent-Induced Reprecipitation Process, and have first succeeded in fabricating C60 nano/microcrystals with various shape and size, using m-xylene and 2-propanol as good and poor solvents, respectively.

It was found that the resulting C60 nano/microcrystals had a hexagonal crystal structure, and that were a kind of crystal solvates in which the molar ratio of C60 to m-xylene was 3:2. C60 nano/microcrystals could be said to be important nano components of integrated devices in electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miller, B., Rosamilia, J. M., Dabbagh, G., Tycko, R., Haddon, R. C., Muller, A. J., Wilson, W., Murphy, D.W., and Hebard, A. F., J. Am. Chem. Soc. 113, 6291 (1991).Google Scholar
2. Blau, W. J., Byrne, H. J., Cardin, D. J., Dennis, T. J., Hare, J. P., Kroto, H. W., Taylor, R., and Walton, D. R. M., Phys. Rev. Lett. 67, 1423 (1991).Google Scholar
3. Eckert, J. F., Nicoud, J. F., Nierengarten, J. F., Liu, S. G., Echegoyen, L., Barigelletti, F., Armaroli, N., Ouali, L., Krasnikov, V., and Hadziioannou, G., J. Am. Chem. Soc. 122, 7467 (2000).Google Scholar
4. Kasai, H., Okazaki, S., Hanada, T., Okada, S., Oikawa, H., Adschiri, T., Arai, K., Yase, K., and Nakanishi, H., Chem. Lett, L1392 (2000).Google Scholar
5. Miyazawa, K., Kuwasaki, Y., Obayashi, A., and Kuwabara, M., J. Mater. Res. 17, 83 (2002).Google Scholar
6. Nakanishi, T., Schmitt, W., Michinobu, T, Kurth, D. G., and Ariga, K., Chem. Commun, 5982 (2005).Google Scholar
7. Wiley, B., Sun, Y., Chen, J., Cang, H., Li, Z. Y., Li, X., and Xia, Y., Mater. Res. Bull 30, 356 (2005)Google Scholar
8. Murray, C. B., Kagan, C. R., and Bawendi, M. G., Science, 270, 1335 (1995).Google Scholar
9. Kasai, H., Nalwa, H. S., Oikawa, H., Okada, S., Matsuda, H., Minami, N., Kakuta, A., Ono, K., Mukoh, A., and Nakanishi, H., Jpn. J. Appl. Phys. 31, L1132 (1992).Google Scholar
10. Schmelzer, J. W. P., Mater. Phys. Mech, 6, 21 (2003)Google Scholar
11. Tan, Z., Masuhara, A., Kasai, H., Nakanishi, H., Oikawa, H., Jpn. J. Appl. Phys, 47 (2), 1426 (2008)Google Scholar
12. Olmstead, M. M., Jiang, F. L., and Balch, A. L., Chem. Commun, 483 (2000).Google Scholar
13. Korobov, M. V., Stukalin, E. B., Mirakyan, A. L., Neretin, I. S., Slovokhotov, Y. L., Dzyabchenko, A. V., Ancharov, A. I., and Torochko, B. P., Carbon 41, 2743 (2003).Google Scholar
14. Minato, J. and Miyazawa, K., Carbon 43, 2837 (2005).Google Scholar
15. Mayers, B. and Xia, Y. N., Adv. Mater. 14, 279 (2002).Google Scholar
16. Alargova, R. G., Deguchi, S., and Tsuji, K., J. Am. Chem. Soc. 123, 10460 (2001).Google Scholar
17. Matijevic, E., Langmuir 10, 8 (1994)Google Scholar
18. Aizenberg, J., Black, A. J., and Whitesides, G. M., 398, 495 (1999)Google Scholar