Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:30:48.032Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Nb/MgO/Bi2Sr2CaCu2Ox Tunnel Junctions Using a Single Crystal

Published online by Cambridge University Press:  26 February 2011

T. Usuki
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd., 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
K. Yamano
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd., 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
K. Shimaoka
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd., 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
K. Takahashi
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd., 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
Y. Yoshisato
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd., 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
S. Nakano
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd., 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
Get access

Abstract

Nb/MgO/Bi2Sr2CaCu2Ox (BSCCO) tunnel junctions using both amorphous and crystalline MgO barriers were fabricated using a BSCCO single crystal in order to compare their superconducting states of interface. Both MgO thin films, 4–8 nm thick and with full coverage, were deposited onto BSCCO single crystals using the MBE method. The junctions using amorphous and crystalline MgO films were found to have gap opening structures at a bias voltage of about 38 mV and 25 mV at 5.2 K, respectively. The gap opening of the junction using an amorphous MgO barrier occurred below 86 K, corresponding very closely with the Tc for the BSCCO single crystal. Its characteristics showed a BCS-like temperature dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Gurvitch, M., Valles, J. N. Jr, Cucolo, A. M., Dynes, R. C., Garno, J. P., Schneemeyer, L. F. and Waszczak, J. V.: Phys. Rev. Leu. 63, 1008 (1989).Google Scholar
2) Kwo, J., Fulton, T. A., Hong, M. and Gammel, P. L.: Appl. Phys. Lett. 56, 788 (1990).Google Scholar
3) Hirata, K., Yamamoto, K., Iijima, K., Takada, J., Terashima, T., Bando, Y. and Mazaki, H.: Appl. Phys. Lett. 56, 683 (1990).Google Scholar
4) Furuyama, M., Iguchi, I., Shirai, K., Kusumori, T., Ohtake, H., Tomura, S. and Nasu, M.: Jpn. J. Appl. Phys. 22, L459 (1990).Google Scholar
5) Venkatesan, T., Inam, A., Dutta, B., Ramesh, R., Hedge, M. S., Wu, X. D., Nazar, L., Chang, C. C., Barner, J. B., Hwamg, D. M. and Rogers, C. T.: Appl. Phys. Lett. 56, 391 (1990).Google Scholar
6) Tanaka, S., Nakanishi, H., Higaki, K. and Itozaki, H.: Jpn. J. Appl. Phys. 29, 1059 (1990).Google Scholar
7) Sakuta, K., Iyori, M. and Kobayashi, T.: IEEE Trans, on Magnetics, 27, 1361 (1991).Google Scholar
8) Michikami, O. and Asahi, M.: Jpn. J. Appl. Phys. 30 466 (1991).Google Scholar
9) Usuki, T., Yasui, I., Yoshisato, Y. and Nakano, S.: IEEE Trans, on Magnetics, 22, 3094 (1991).Google Scholar
10) Takahashi, K., Shimaoka, K., Yamano, K., Usuki, T., Yoshisato, Y. and Nakano, S.: Jpn. J. Appl. Phys.: 21, 231 (1992)Google Scholar
11) Yamano, K., Shimaoka, K., Takahashi, K., Usuki, T., Yoshisato, Y. and Nakano, S.: Physica. C. 185–189, 2549 (1991).Google Scholar
12) Escudero, R., Guarner, E. and Morales, F.: Physica C, 166 15 (1990).Google Scholar
13) Huang, Q., Zasadzinski, J. F., Gray, K. E., Liu, J. Z. and Claus, H.: Phys. Rev. B, 40, 9366 (1989).Google Scholar
14) Hasegawa, T., Nantoh, M. and Kitazawa, K.: Jpn. J. Appl. Phys. 30, L276 (1991).Google Scholar
15) Briceno, G. and Zettl, A.: Solid State Commun., 70, 1055 (1989).Google Scholar