Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:56:28.951Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Chromium Oxide Nanoparticles/Thin Films

Published online by Cambridge University Press:  17 March 2011

Zhenchen Zhong
Affiliation:
Institute for Micromanufacturing (IfM) and Physics Program, Louisiana Tech University, Ruston, LA 71272; U.S.A. and Department of Physics, Grambling State University, Grambling, LA 71245, U.S.A
Ruihua Cheng
Affiliation:
Department of Physics and Astronomy and the Center for Materials Research and Analysis (CMRA), Behlen Laboratory of Physics, University of Nebraska-Lincoln, NE 68588-0111, U.S.A
Get access

Abstract

Well-dispersed nanoscale textured chromium oxide particles/thin films can be fabricated under certain conditions by laser-induced solution deposition (LISD) from organic solutions and by using selective organometallic chemical vapor deposition (OMCVD). The fabricated nanoparticles/thin films are characterized by scanning electron microscope (SEM), EDX, X-ray diffraction, and magnetic measurements. We have successfully demonstrated that the LISD and OMCVD are unique techniques for fabricating uniformly-distributed thin films but anistropic chromium oxide particles, which can be used in electro-magnetic devices. The magnetization measurements show that both types of chromium oxides are presented and that the Curie temperature Tc and the saturation magnetization field may be adjustable by controlling the stoichiometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bratkovsky, A.M., Phys. Rev. B56, 2344 (1997).Google Scholar
2. Manoharan, S.S., Elefant, D., Reiss, G. and Goodenough, J.B., Appl. Phys. Lett. 72, 984 (1998); X.W. Li, A. Gupta, T.R. McGuire, P.R. Duncombe, and Gang Xiao, J. Appl. Phys. 85, 5585 (1999); K. Suzuki and P.M. Tedrow, Phys. Rev. B58, 11597 (1998).Google Scholar
3. Coey, J.D.M., Berkowitz, A.E., Balcells, Ll, Putris, F.F. and Barry, A., Phys. Rev. Lett. 80, 3815 (1998).Google Scholar
4. Kouvel, J. S., Rodbell, D. S., J. Appl. Phys. 38, 979 (1967).Google Scholar
5. Schwarz, K., J. Phys. F 16, L211 (1986).Google Scholar
6. Matar, S., Demazeau, G., Sticht, J., Eyert, V., and Kübler, J., J. de Physique I 2, 315 (1992).Google Scholar
7. Korotin, M.A., Anisimov, V.I., Khomskii, D.I. and Sawatzky, G.A., Phys. Rev. Lett. 80, 4305 (1998).Google Scholar
8. S. Lewis, P., Allen, P.B., and Sasaki, T., Phy. Rew. B55, 10 253 (1997).Google Scholar
9. Lueken, H. van and Groot, R.A. de, Phys. Rev. B51, 7176 (1995).Google Scholar
10. Kulatov, E. and Mazin, I.I., J. Phys. Condens. Matter. 2, 343 (1990).Google Scholar
11. Kümper, K.P., Schmitt, W., Güntherodt, G., Gambino, R.J., and R. Ruf. Phys. Rev. Lett. 59, 2788 (1987).Google Scholar
12. Weisendanger, R., Güntherodt, H.-J., Güntherodt, G., Gambino, R.J., and Ruf, R., Phys. Rev. Lett. 65, 247 (1990).Google Scholar
13. Soulen, R.J. et al. , Science 282, 85 (1998); R.J. Soulen, et al., J. Appl. Phys. 85, 4589 (1999).Google Scholar
14. DeSisto, W.J. et al. , Appl. Phys. Lett. 70, 3789 (2000)Google Scholar
15. Dowben, P. A. et al. , J. Appl. Phys. 67, 5658 (1990).Google Scholar
16. Perkins, K., Hwang, C., Onellion, M., Kim, Yoon–Gi, and Dowben, P.A., Thin Solid Films 198 (1991) 317329 Google Scholar
17. Mancini, Derrick C. et al. , J. Vac. Sci. Technol. B8,1804 (1990).Google Scholar
18. Welipitiya, D. et al. , Mat. Res. Soc. Symp. Proc. 475, 257 (1997).Google Scholar
19. C. Borca, N., Welipitiya, D., Adenwalla, S., P. Dowben, A., Phys. Low-Dim. Struct. 11/12, 173 (1997)Google Scholar
20. Zhong, Z.C., Dowben, P.A. and Sellmyer, D. J., Materials Letters 37, 320 (1998); Z.C. Zhong, V. Holmes, P.A. Dowben and D.J. Sellmyer, Mat. Res. Soc. Symp. Proc. (2000) pp 231; P.A. Dowben, Z.C. Zhong and D.J. Sellmyer, U.S. Patent No. 6,025,038, (15 February 2000).Google Scholar
21. Dulli, H., Plummer, E. W., Dowben, P. A., Choi, J. and Liou, S-H, Appl. Phys. Lett. 77, 88 (2000).Google Scholar
22. Riotoiu, D., Nozieres, J. P., Borca, C. N., Borca, B. and Dowben, P. A., Appl. Phys. Lett. 76, 2349 (2000).Google Scholar