Published online by Cambridge University Press: 31 January 2011
Fusion of metallic nanoparticles at both surfaces of silica colloids and nanoporous bulk materials has been utilized as an effective method to integrate inorganic and organic components into nanocomposite materials. When performed on substrates that have been modified with hydrophobic functional groups, aminosilica colloids doped with metallic nanoparticles through the ethylenediamine functional groups adhere to the substrates and self-assemble into nanocomposite film with its thickness to be the function of the time. On the contrary, without metal-bound functional groups, fusion of metallic nanoparticles can be induced at the interface of nanoporous silica when polymer is utilized as the mobile phase for metal nanoparticles inside of silica. Formation, mobilization, and fusion of metallic nanoparticles within the polymer phase can be simultaneously induced at 160 ˚C, during which reactions alter the physical appearance of the materials from transparent to silver metallic color. These two methods can combine with soft-lithography method to create functional structures that exhibit enhanced electrochemical property.