Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:48:10.911Z Has data issue: false hasContentIssue false

Fabricate Photonic Crystals Based on ZnS/opal System via Solvothermal Method

Published online by Cambridge University Press:  15 March 2011

Jieming Cao
Affiliation:
Research Institute of Nanomaterials, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
Get access

Abstract

We made photonic crystals composed of artificial opals infiltrated with ZnS semiconductor nanocrystals by using self-assembly and solvothermal methods. Scanning electron microscopy images show that the silica spheres exhibit a well-ordered arrangement and the ZnS nanocrystals grow homogenously inside the opal matrix and the as-synthesized ZnS nanocrystals reveal a cubic phase from X-ray diffraction pattern. Furthermore, the optical properties of the infiltrated opals with different ZnS filling ratio are also studied by transmission spectroscopy respectively. It is proposed that the position of the stop band can be easily designed by controlling the infiltration ratio of ZnS. These results demonstrate an effective and practical route to obtain high-performance photonic crystal structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
2. John, S., Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
3. Service, R. F., Science 295, 2399 (2002).Google Scholar
4. Russell, P., Science 299, 358 (2003).Google Scholar
5. Joannopoulos, J. D., Villeneuve, P. R., Fan, S., Nature 386, 143 (1997).Google Scholar
6. Miguez, H., Lopez, C., Meseguer, F., Blanco, A., Vazquez, L., Mayoral, R., Appl. Phys. Lett. 71, 1148 (1997).Google Scholar
7. Xia, Y., Gates, B., Li, Z., Adv. Mater. 13, 409 (2001).Google Scholar
8. Blanco, A., Miguez, H., Meseguer, F., Lopez, C., Appl. Phys. Lett. 78, 3181 (2001).Google Scholar
9. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J. P., Ozin, G. A., Toader, O., Driel, H. M., Nature 405, 437 (2000).Google Scholar
10. Jiang, P., Bertone, J. F., Colvin, V. L., Science 291, 453 (2001).Google Scholar
11. Lei, Z. B., Li, J. M., Ke, Y. X., Zhang, Y. G., Wang, H., He, G. F., J. Mater. Chem. 11, 1778 (2001).Google Scholar
12. Deng, Z. X., Wang, C., Sun, X. M., Li, Y. D., Inorg. Chem. 41, 869 (2002).Google Scholar
13. Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
14. Velikov, K. P., Blaaderen, A., Langmuir 17, 4779 (2001).Google Scholar
15. Gu, Z. Z., Kubo, S., Fujishima, A., Sato, O., Appl. Phys. A 74, 127 (2002).Google Scholar
16. Zhan, J. H., Yang, X. G., Wang, D. W., Li, S. D., Xie, Y., Xia, Y., Qian, Y., Adv. Mater. 12, 1348 (2000).Google Scholar
17. Schroden, R. C., Daous, M. A., Stein, A., Chem. Mater. 13, 2945 (2001).Google Scholar