Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T02:01:13.136Z Has data issue: false hasContentIssue false

Extracellular Iron-Sulfur Precipitates From Growth of Desulfovibrio desulfuricans

Published online by Cambridge University Press:  10 February 2011

Mark R. Antonio
Affiliation:
Argonne National Laboratory, Chemistry Division, Argonne, IL 60439, [email protected]
Monica Lee Tischler
Affiliation:
Benedictine University, Department of Biological Sciences, Lisle, IL 60532
Dana Witzcak
Affiliation:
Benedictine University, Department of Biological Sciences, Lisle, IL 60532
Get access

Abstract

We have examined extracellular iron-bearing precipitates resulting from the growth of Desulfovibrio desuyfuricans in a basal medium with lactate as the carbon source and ferrous sulfate. Black precipitates were obtained when D. desulfuricans was grown with an excess of FeSO4. When D. desulfuricans was grown under conditions with low amounts of FeSO4, brown precipitates were obtained. The precipitates were characterized by iron K-edge XAFS (x-ray absorption fine structure), 57Fe Mössbauer-effect spectroscopy, and powder x-ray diffraction. Both were noncrystalline and nonmagnetic (at room temperature) solids containing high-spin Fe(III). The spectroscopic data for the black precipitates indicate the formation of an iron-sulfur phase with 6 nearest S neighbors about Fe at an average distance of 2.24(1) Å, whereas the brown precipitates are an iron-oxygen-sulfur phase with 6 nearest O neighbors about Fe at an average distance of 1.95(1) Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Donaldson, E. C., Chilingarian, G. V., and Yen, T. F., in Enhanced Oil Recovery, II. Processes and Operations (Elsevier, Amsterdam, 1989).Google Scholar
2 Denman, T. A. and Starr, S., Environ. Sci. Res. 46, 569578 (1992).Google Scholar
3 Eden, B., Laycock, P. J., and Fielder, M., (UK Health and Safety Executive - Offshore Technology Report 92 385, 1993).Google Scholar
4 Schoonen, M. A. A. and Barnes, H. L., Geochim. Cosmochim. Acta 52, 649654 (1988).10.1016/0016-7037(88)90326-2Google Scholar
5 Ligthelm, D. J., Boer, R. B. de, Brint, J. F., and Schulte, W. M., in Offshore Europe 91 Proc., SPE 23141 (Society of Petroleum Engineers, Richardson, TX, 1991), p. 369378.Google Scholar
6 Nazina, T. N., Ivanova, A. E., Golubeva, O. V., Ibatullin, R. R., Belyaev, S. S., and Ivanov, M. V., Microbiology, Engl. Transl. 64, 203208 (1995).Google Scholar
7 Stetter, K. O., Huber, R., Blöchl, E., Kurr, M., Eden, R. D. et al. , Nature 365, 743745 (1993).10.1038/365743a0Google Scholar
8 Cochrane, W. J., Jones, P. S., Sanders, P. F., Holt, D. M., and Mosley, M. J., SPE Paper 18368, 301316 (1988).Google Scholar
9 Antloga, K. M. and Griffin, W. M., Dev. Ind. Microbiol. 26, 597610 (1985).Google Scholar
10 Odom, J. M., in The Sulfate Reducing Bacteria: Contemporary Pespectives, edited by Singleton, R. Jr, and Odom, J. M. (Springer-Verlag, New York, 1993), p. 189249.10.1007/978-1-4613-9263-7_8Google Scholar
11 Westlake, D. W. S., in Microbial Enhancement of Oil Recovery - Recent Advances, edited by Donaldson, E. C. (Elsevier, Amsterdam, 1991), p. 257263.Google Scholar
12 Booth, G. H., Cooper, P. M., and Wakerley, D. S., Br. Corros. J. 1, 345349 (1966).10.1179/000705966798327254Google Scholar
13 Booth, G. H., Robb, J. A., and Wakerley, D. S., in The Third International Congress on Metallic Corrosion (Swets-Zeitlinger, Moscow, 1966), Vol. II, p. 542554.Google Scholar
14 King, R. A., Miller, J. D. A., and Wakerley, D. S., Br. Corros. J. 8, 8993 (1973).10.1179/bcj.1973.8.2.89Google Scholar
15 King, R. A., Dittmer, C. K., and Miller, J. D. A., Br. Corros. J. 11, 105107 (1976).10.1179/000705976798320106Google Scholar
16 McNeil, M. B. and Little, B. J., Corrosion 46, 599600 (1990).10.5006/1.3585154Google Scholar
17 Lee, W., Lewandowski, Z., Nielsen, P. H., and Hamilton, W. A., Biofouling 8, 165194 (1995).10.1080/08927019509378271Google Scholar
18 Barkman, J. H. and Davidson, D. H., J. Pet. Technol., 865873 (1972).10.2118/3543-PAGoogle Scholar
19 Galbraith, J. M. and Lofgren, K. L., Mater. Perform. 26, 4249 (1987).Google Scholar
20 Antonio, M. R., Karet, G. B., and Guzowski, J. P., Fuel 79, 3745 (2000).10.1016/S0016-2361(99)00132-5Google Scholar
21 Becking, L. G. M. Baas and Moore, D., Economic Geology 56, 259272 (1961).10.2113/gsecongeo.56.2.259Google Scholar
22 Freke, A. M. and Tate, D., J. Biochem. Microbiol. Technol. Eng. 3, 2939 (1961).10.1002/jbmte.390030105Google Scholar
23 Rickard, D. T., Stockh. Contr. Geol. 20, 4966 (1969).Google Scholar
24 Hallberg, R. O., Neues Jahrb. Mineral., Monatsh., 481500 (1972).Google Scholar
25 Bazylinski, D. A., Mater. Res. Soc. Symp. Proc. 218, 8191 (1991).10.1557/PROC-218-81Google Scholar
26 Herbert, R. B. Jr, Benner, S. G., Pratt, A. R. et al. , Chem. Geol. 144, 8797 (1998).10.1016/S0009-2541(97)00122-8Google Scholar
27 Mann, S., Sparks, N. H. C., Frankel, R. B. et al. , Nature 343, 258261 (1990).10.1038/343258a0Google Scholar
28 Farina, M., Esquivel, D. M. S., and Barros, H. G. P. Lins de, Nature 343, 256258 (1990).10.1038/343256a0Google Scholar
29 Bazylinski, D. A., Chem. Geol. 132, 191198 (1996).10.1016/S0009-2541(96)00055-1Google Scholar
30 Posfai, M., Buseck, P. R., Bazylinski, D. A., and Frankel, R. B., Science 280, 880883 (1998).Google Scholar
31 McNeil, M. B., Jones, J. M., and Little, B. J., in Corrosion 91 (NACE, Cincinnati, 1991), Paper No. 580, p. 580/1–580/16.Google Scholar
32 Donald, R. and Southam, G., Geochim. Cosmochim. Acta 63, 20192023 (1999).10.1016/S0016-7037(99)00140-4Google Scholar
33 Watson, J. H. P., Ellwood, D. C., Deng, Q. et al. , Miner. Eng. 8, 10971108 (1995).10.1016/0892-6875(95)00075-2Google Scholar
34 Balch, W. E., Fox, G. E., Magrum, L. J. et al. , Microbiol. Rev. 43, 260296 (1979).Google Scholar
35 Kent, T. A., (WEB Research Company, Eden Prarie, MN, www.webres.com, 1996).Google Scholar
36 Song, I., Antonio, M. R., and Payer, J. H., J. Electrochem. Soc. 142, 22192224 (1995).10.1149/1.2044278Google Scholar
37 Totir, D. A., Bae, I. T., Hu, Y., Antonio, M. R., Stan, M. A., and Scherson, D. A., J. Phys. Chem. B 101, 97519756 (1997).10.1021/jp971470rGoogle Scholar
38 Tryk, D. A., Kim, S., Hu, Y., Xing, W. et al. , J. Phys. Chem. 99, 37323735 (1995).10.1021/j100011a047Google Scholar
39 George, G. N. and Pickering, I. J., (http://www-ssrl.slac.stanford./exafspak.html).Google Scholar
40 Rehr, J. J., Leon, J. M. de, Zabinsky, S. I. et al. , J. Am. Chem. Soc. 113, 51355140 (1991).10.1021/ja00014a001Google Scholar
41 Sugiura, C., J. Chem. Phys. 80, 10471049 (1984).10.1063/1.446831Google Scholar
42 Waychunas, G. A., Apted, M. J., and Brown, G. E., Phys. Chem. Minerals 10, 19 (1983).10.1007/BF01204319Google Scholar
43 Yamashita, H., Ohtsuka, Y., Yoshida, S. et al. , Energy Fuels 3, 686692 (1989).10.1021/ef00018a005Google Scholar
44 Kaneko, K., Kosugi, N., and Kuroda, H., J. Chem. Soc., Faraday Trans. 1 85, 869881 (1989).10.1039/f19898500869Google Scholar
45 Douglas, T., Dickson, D. P. E., Betteridge, S., Charnock, J., Garner, C. D., and Mann, S., Science 269, 5457 (1995).10.1126/science.269.5220.54Google Scholar
46 Goodenough, J. B. and Fatseas, G. A., J. Solid State Chem. 41, 122 (1982).10.1016/0022-4596(82)90028-7Google Scholar
47 Huffman, G. P. and Huggins, F. E., Fuel 57, 592604 (1978).10.1016/0016-2361(78)90188-6Google Scholar
48 Stiller, A. H., McCormick, B. J., Russell, P., and Montano, P. A., J. Am. Chem. Soc. 100, 25532554 (1978).10.1021/ja00476a051Google Scholar
49 Meagher, A., Nair, V., and Szostak, R., Zeolites 8, 311 (1988).10.1016/S0144-2449(88)80022-8Google Scholar
50 Shannon, R. D., Acta Cryst. A 32, 751767 (1976).10.1107/S0567739476001551Google Scholar
51 Soderholm, L., Williams, C. W., Antonio, M. R., Tischler, M. L., and Markos, M., Mater. Res. Soc. Symp. Proc. this volume (2000).Google Scholar