Published online by Cambridge University Press: 21 March 2011
The external chemical reactivity of graphene sheet, fullerenes and carbon nanotubes has been investigated. The total reaction energy is analyzed with several contributing terms and formulated as a function of the pyramidal angles of C atoms. We have determined the parameters for the formulae from ab initio simulation of graphene. We have applied them to predict hydrogenation energy of several nanotubes and C60, and demonstrated that the predicted total reaction energies are very close to the results of total energy pseudo-potential density functional theory calculations. This analysis can be used to predict the reaction energy and local bonding configuration of a reactant with diverse fullerenes and nanotubes within 0.1 eV accuracy.