Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:51:31.601Z Has data issue: false hasContentIssue false

Extended X-ray Absorption Fine Structure Studies of GaN Epilayers Doped in situ with Er and Eu During Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

V. Katchkanov
Affiliation:
Department of Physics, Strathclyde University, 107 Rottenrow East, Glasgow, G4 0NG, United Kingdom Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, United Kingdom
J. F. W. Mosselmans
Affiliation:
Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, United Kingdom
S. Dalmasso
Affiliation:
Department of Physics, Strathclyde University, 107 Rottenrow East, Glasgow, G4 0NG, United Kingdom
K. P. O'Donnell
Affiliation:
Department of Physics, Strathclyde University, 107 Rottenrow East, Glasgow, G4 0NG, United Kingdom
R. W. Martin
Affiliation:
Department of Physics, Strathclyde University, 107 Rottenrow East, Glasgow, G4 0NG, United Kingdom
O. Briot
Affiliation:
Groupe d'Études des Semiconducteurs, Université Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 05, France
N. Rousseau
Affiliation:
Groupe d'Études des Semiconducteurs, Université Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 05, France
G. Halambalakis
Affiliation:
Groupe d'Études des Semiconducteurs, Université Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 05, France
Get access

Abstract

The local structure around Er and Eu atoms introduced into GaN epilayers was studied by means of Extended X-ray Absorption Fine Structure above the appropriate rare-earth X-ray absorption edge. The samples were doped in situ during growth by Molecular Beam Epitaxy. The formation of ErN clusters was found in samples with high average Er concentrations of 32±6% and 12.4±0.8%, estimated by Wavelength Dispersive X-ray analysis. When the average Er concentration is decreased to 6.0±0.2%, 1.6±0.2% and 0.17±0.02%, Er is found in localised clusters of ErGaN phase with high local Er content. Similar behaviour is observed for Eu-doped samples. For an average Eu concentration of 30.5±0.5% clusters of pure EuN occur. Decreasing the Eu concentration to 10.4±0.5% leads to EuGaN clusters with high local Eu content. However, for a sample with an Eu concentration of 14.2±0.5% clustering of Eu was not observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Polman, A., J. Appl. Phys., 82, 1 (1997).Google Scholar
2. Kenyon, A.J., Progress in Quantum Electronics 26, 225 (2002).Google Scholar
3. Favennec, P.N., Haridon, H.L., Salvi, M., Muotonnet, D., Le Guillo, Y., Electron. Lett. 25, 718 (1989).Google Scholar
4. Edited by Gil, Bernard, Low-dimensional Nitride Semiconductors, 1st ed. (Oxford University Press, 2002).Google Scholar
5. Steckl, A.J., Heikenfeld, J.C., Dong-Seon, Lee, Garter, M.J., Baker, C.C., Yongqiang, Wang, Jones, R., Selected topics in Quantum Electronics 8, 749 (2002)Google Scholar
6. Judd, B.R., Phys. Rev. 127, 750 (1962)Google Scholar
7. De Vries, B., Wahl, U., Vantomme, A., Correia, J.G., and the ISOLDE collaboration, Phys. Status Solidi (c) 0, 453 (2003).Google Scholar
8. Alves, E., Barradas, N.P., Monteiro, T., Correia, R., Kreissig, U., Nucl. Instrum. Meth. B 188, 73 (2002).Google Scholar
10. Daresbury Laboratory, 2000. Based on an original program, SPLINE, Ellis, P. (1995), PhD Thesis, University of Sydney.Google Scholar
11. Binsted, N. 1998, CCLRC Daresbury Computer Program.Google Scholar
12. Klemm, W., Winkelmann, G., Zeitschrift für anorganische und allgemeine Chemie 288, 87 (1956).Google Scholar
13. Jacobs, H., Fink, U., Zeitschrift für anorganische und allgemeine Chemie 438, 151 (1978)Google Scholar
14. Wright, A.F., Nelson, J.S., Phys. Rev. B 51, 7866 (1995).Google Scholar
15. Citrin, P. H., Northrup, P. A., Birkhahn, R., Steckl, A. J., Appl. Phys. Lett 76, 2865 (2000).Google Scholar
16. Lee, D.S., Heikenfeld, J., Steckl, A.J., Hommerich, U., Seo, J.T., Braud, A., Zavada, J., Appl. Phys. Lett. 79, 719 (2001)Google Scholar
17. Bang, H., Morishima, S., Li, Z., Akimoto, K., Nomurab, M., Yagi, E., J. Cryst. Growth 237–239, 1027 (2002).Google Scholar