Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:33:41.110Z Has data issue: false hasContentIssue false

Exploring the Relation between Interface Structure & Mechanical Properties in Multilayer Materials

Published online by Cambridge University Press:  25 February 2011

A. F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Chemistry & Materials Science, P.O. Box 808, Livermore, California 94550
D. M. Makowiecki
Affiliation:
Lawrence Livermore National Laboratory, Chemistry & Materials Science, P.O. Box 808, Livermore, California 94550
M. A. Mckernan
Affiliation:
Lawrence Livermore National Laboratory, Chemistry & Materials Science, P.O. Box 808, Livermore, California 94550
S. R. Nutt
Affiliation:
Brown University, Division of Engineering, Box D, Providence, Rhode Island 02912
K. Green
Affiliation:
Brown University, Division of Engineering, Box D, Providence, Rhode Island 02912
Get access

Abstract

The relationship between microstructure and physical behavior is especially pronounced in synthetic multilayer materials. Insight to the mechanisms responsible for changes in the mechanical properties can be investigated through a careful examination of the multilayer microstructure. A dominant feature of the nultilayer structure is the interface. The population of interlayer boundaries, that is interfaces, is directly proportional to the multilayer period for any given film thickness. In this paper, we will evaluate “TEM” images of multilayer systems. The interface structure will be viewed in cross-section and a range of layer thicknesses will be considered. Variation in the elastic modulus, yield stress, and microhardness have been observed for noble-transition metal systems over a wide range of multilayer periods, from less than 1 nm to greater than 1000 nm. In epitaxial systems, the extent of superlattice perfection (coherency effects) is closely tied with changes in physical behavior. Emphasis will thus be placed on the str'ucture and strain distribution from the interface, and its role in determining the mechanical properties of multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jankowski, A.F., J.Phys. F:Met. Phys. 18, in press (1988).Google Scholar
2.Matthews, J.W. and Blakeslee, A.E., J.Cryst.Growth 27, 118 (1974); 29, 273 (1975); 32, 265 (1976).Google Scholar
3.Shiflet, G.J., Matls.Sci.Eng'g. 81, 61 (1986).Google Scholar
4.Frank, F.C. and van der Merwe, J.H., Proc.Roy. Soc. (London) A 198, 205,216 (1949); 200, 125 (1949).Google Scholar
5.van der Merwe, J.H., Proc. Phys.Soc. (London) A 63, 616 (1950); J.Appl. Phys. 34, 117,123 (1963); 41, 4725 (1970); Treatise Mater. Sci.Technol. 2, 1 (1973).Google Scholar
6.Cahn, J.W., Acta Metall. 11, 1275 (1963).Google Scholar
7.Cockayne, D.J.H. and Gronsky, R., Phil.Mag. A 44, 159 (1981).Google Scholar
8.Sinclair, R., Gronsky, R. and Thomas, G., Acta Metall. 24, 789 (1976).Google Scholar
9.Gronsky, R. and Thomas, G., in Modulated Structures (AlP Conf. Proc. 53, 1979) 266.Google Scholar
10.Treacy, M.J., Gibson, J.M. and Howie, A., Phil.Mag. A 51, 389 (1985).Google Scholar
11.Stranski, I.N. and Krastanov, L., Sitzungsber.Akad.Wiss.Wien, Math-Naturwiss,Kl,Iib 146, 797 (1938).Google Scholar
12.Volmer, M. and Weber, A., Z.Phys. Chem. 119, 277 (1926).Google Scholar
13.Bauer, E. and Poppa, H., Thin Solid Films 12, 167 (1972).Google Scholar
14.Bauer, E., Z.Kristallogr. 110, 372 (1958).Google Scholar
15.Vook, R.W., Inter.Met.Rev. 27, 209 (1982).Google Scholar
16.Nakahara, S., Schultz, R.J. and Testardi, L.R., Thin Solid Films 72, 277 (1980).Google Scholar
17.Bravman, J. and Sinclair, R., J.Elec.Micr. Tech. 1, 53 (1984).Google Scholar
18.Henein, G.E. and Hilliard, J.E., J.Appl.Phys. 54, 728 (1983).Google Scholar
19.Moss, S.C., in Local Atomic Arrangements Studied By X-Ray Diffraction (Metallurgical Soc. Conf. 36, 1965) 114.Google Scholar
20.Yang, W.M.C., Tsakalakos, T. and Hilliard, J.E., J.Appl. Phys. 48, 876 (1977).Google Scholar
21.Kobayashi, A and Sarma, S.Das, Phys.Rev. B 35, 8042 (1987).Google Scholar
22.Milchev, A. and Markov, I., Surf. Sci. 136, 503,519 (1984); 145, 313 (1984).Google Scholar
23.Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S. and Robinson, I.K., J.Vac. Sci.Technol. A 2, 436 (1984); J. Bevk, J.P. Mannaerts, L.C. Feldman, B.A. Davidson and A. Ourmazd, Appl. Phys. Lett. 49, 286 (1986); T.P. Pearsall, J. Bevk, L.C. Feldman, J.M. Bonar, J.P. Mannaerst and A. Ourmazd, Phys.Rev. Lett. 58, 729 (1987).Google Scholar
24.Bevk, J., “Elastic Properties of One-Two Dimensional Microcomposites” (ASM Materials Week, Cincinn., October 13, 1987) - comments that in the Si/Ge superlattice, the displacements of the tetragonally distorted Ge lattice were modeled successively using bulk elastic constants.Google Scholar