Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:33:21.806Z Has data issue: false hasContentIssue false

Experimentation and Modelling of U, Th and Lanthanides Transport in Fissured Rocks: Influence of Complexation

Published online by Cambridge University Press:  28 February 2011

Pierre Toulhoat*
Affiliation:
Commissariat à l'Energie Atomique, Centre d'Etudes Nucléaires de Saclay, IRDI/DCAEA/SEAIN, 91191 Gif sur Yvette cedex, FRANCE Laboratoire de Géochimie Comparée et Systématique, Université Paris VI 4 place Jussieu 75005 Paris, FRANCE
Get access

Abstract

Three circulation experiments have been carried out between two drill-holes in a granite after hydraulic fracturation (Le Mayet de Montagne, France). We have injected together uranyl carbonate and Th, La, Sm, Eu, Dy and Yb EDTA complexes. Amounts of tracers were different in each run. Recovery curves are similar for Th and lanthanides, but have a delayed peak and an increased tailing for uranium. For rare earth elements, recovery rates increase with increasing stability of the complex used as tracer. Recovery rates increase also with increasing amount of tracer. Those features are explained by non linear and non reversible sorption. The importance of complexation is demonstrated. Strong organic complexing agents enhance trace elements mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bigot, S., Treuil, M., Dumonceau, J., Fromage, F.; J. Hydrol. 70, 133148 (1984)Google Scholar
2. Wheelwright, E.J., Spedding, F.H., Schwarzenbach, G.; J. Am. Chem. Soc., 75, 41964204 (1953)CrossRefGoogle Scholar
3. Dumonceau, J., Bigot, S., Treuil, M., Faucherre, J., Fromage, F.; C.R. Acad. Sci., Paris, ser. C., 287, 325327 (1978)Google Scholar
4. Lacey, N.J., De Laguna, H.; Science, 124 402 (1956)Google Scholar
5. Langmuir, D.; Geochim. Cosmochim. Acta, 42, 547569 (1978)Google Scholar
6. Bigot, S., Treuil, M.; J. Radioanal Chem., 59(2), 341349 (1980)Google Scholar
7. Borovec, Z.; Chem. Geol., 32, 4558 (1981)Google Scholar
8. Torstenfelt, B., Andersson, K., Allard, B.; Chem. Geol. 36, 123137 (1982)Google Scholar
9. Rochon, J., Rançon, D., Gourmel, J.P. in Underground disposal of radioactive wastes, Vol II IAEA Vienna, SM 243/155 (1980) pp 271314 Google Scholar
10. Fried, J.J. Groundwater Pollution (Elsevier Scientific publishing company, Amsterdam, 1975), p. 250 Google Scholar
11. Neretnieks, I. in Environmental migration of long lived radionuclides IAEA Vienna, SM 257/19 (1982) pp 635657 Google Scholar
12. Andersson, K., Torstenfelt, B., Allard, B. in Environmental migration of long lived radionuclides IAEA Vienna, SM 257/20 (1982) pp 111131 Google Scholar
13. Stumm, f., Kummert, R., Sigg, L.; Croat. Chem. Act. 53, 291312 (1980)Google Scholar
14. Bourg, A.C.M., in Speciation of trace elements in natural waters edited by Ahrland, S. an Nancollas G. IUPAC (1981)Google Scholar