Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T11:10:14.596Z Has data issue: false hasContentIssue false

Experimental verification of the need for either jj or intermediate coupling in the 5f states of plutonium

Published online by Cambridge University Press:  01 February 2011

K. T. Moore
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
M. A. Wall
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
A. J. Schwartz
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
B. W. Chung
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
J. G. Tobin
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
D. K. Shuh
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
R. K. Schulze
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 8754
Get access

Abstract

Here, we demonstrate the power of electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM) to investigate the electronic structure plutonium. Using EELS, TEM, and synchrotron-radiation-based X-ray absorption spectroscopy (XAS), we provide the first experimental evidence that Russell-Saunders (LS) coupling fails for the 5f states of Pu. These results support the assumption that only the use of jj or intermediate coupling is appropriate for the 5f states of Pu. EELS experiments were performed in a TEM and are coupled with image and diffraction data, therefore, the measurements are completely phase specific. It is shown that EELS in a TEM may be used to circumvent the difficulty of producing single-phase or single-crystal samples due to its high spatial resolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Albers, R.C., Nature 410, 759 (2001).Google Scholar
2. Savrasov, S.Y., Kotliar, G., Abrahams, E., Nature 410, 793 (2001).Google Scholar
3. Lander, G., Science 301, 1057 (2003).Google Scholar
4. Dai, X. et al., Science 300, 953 (2003).Google Scholar
5. Wong, J. et al., Science 301, 1078 (2003).Google Scholar
6. Sarrao, J.L. et al., Nature 420, 297 (2002).Google Scholar
7. Opahle, I., Oppeneer, P.M., Phys. Rev. Lett. 90, 157001 (2003).Google Scholar
8. Maehiro, T. et al., Phys. Rev. Lett. 90, 207007 (2003).Google Scholar
9. Hecker, S.S., MRS Bulletin 26, 872 (2001) and reference therein.Google Scholar
10. Savrasov, S.Y. and Kotliar, G., Phys. Rev. Lett. 84, 3670 (2000).Google Scholar
11. Söderlind, P., Europhys. Lett. 55, 525 (2001).Google Scholar
12. Eisberg, R. and Resnick, R., “Quantum Physics,” John Wiley and Sons, NY, 1974 Google Scholar
13. Kittel, C., “Introduction to Solid State Physics,” 5th Ed., John Wiley and Sons, NY, 1976, page 442.Google Scholar
14. Skrivers, H.L., Andersen, O.K., and Johansson, B., Phys. Rev. Lett. 41, 42 (1978).Google Scholar
15. Cooper, et al. “Hybridization-induced anisotropy in cerium and actinide systems” in Handbook on the physics and chemistry of the actinides, ed. Freeman, A.J. and Lander, G.H., Elsevier Science, Vol. 2, 1985.Google Scholar
16. Egerton, R.F., “Electron energy-loss spectroscopy in the electron microscope2nd Ed., Plenum Press, NY, 1996, page 221.Google Scholar
17. Tobin, J.G. et al., Phys. Rev. B 68, 115109 (2003).Google Scholar
18. Aono, M. et al., Solid State. Commun. 39, 1057 (1981).Google Scholar
19. Cukier, M. et al., J. Phys. (Paris) 39, L315 (1978).Google Scholar
20. Havela, L. et al., Phys. Rev. B 65, 235118 (2002).Google Scholar
21. “Electronic Structure of Solids: Photoemission Spectra and Related Data,” ed. Goldmann, A. and Koch, E., Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III, Vol. 23, Springer-Verlag, Berlin, Germany, 1994. For rare earths: Subvolume 23a, Chapter 2.5 by W.D. Schneider. For actinides: Subvolume 23b, Chapter 2.8 by J.R. Naegale.Google Scholar
22. Dehmer, J.L. et al., Phys. Rev. Lett. 26, 1521 (1971).Google Scholar
23. Starace, A.F., Phys. Rev. B 5, 1773 (1972).Google Scholar
24. Sugar, J., Phys. Rev. B 5, 1785 (1972).Google Scholar
25. Johansson, L.I. et al., Phys. Rev. B 21, 1408 (1980).Google Scholar
26. Söderlind, P., Thesis (Uppsala, 1994) page 83.Google Scholar
27. Baer, Y. and Lang, J.K., Phys. Rev. B 21, 2060 (1980).Google Scholar
28. Pénicaud, M., J. Phys: Condens. Matter. 9, 6341 (1997).Google Scholar