Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:16:03.201Z Has data issue: false hasContentIssue false

Experimental Study of the Relative Energy of Symmetrical <110> Tilt Boundaries in a Semi-Conducting F.C.C. Oxide (NiO).

Published online by Cambridge University Press:  15 February 2011

Guy Dhalenne
Affiliation:
Laboratoire de Chimie Appliquée, Université Paris Xl, Batiment 414, 91405 Orsay Cedex, FRANCE.
Michel Dechamps
Affiliation:
Laboratoire de Chimie Appliquée, Université Paris Xl, Batiment 414, 91405 Orsay Cedex, FRANCE.
Alexandre Revcolevschi
Affiliation:
Laboratoire de Chimie Appliquée, Université Paris Xl, Batiment 414, 91405 Orsay Cedex, FRANCE.
Get access

Abstract

Large size bicrystalline samples of NiO corresponding to tilt configurations around a < 110 > axis have been grown by the flame fusion technique, the misorientation angles varying from 0 to 180°. The variation of the relative energy of the grain boundary with misorientation has been studied and has indicated a very different behaviour from that previously observed by the authors on <100> tilt boundaries. High relative energy values and deep cusps on the energy curve at high coincidence angles are observed. The results are discussed in terms of interface energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harrison, R.J., Bruggeman, G.A. and Bishop, G.H., pp.4591 in Grain Boundary Structure and Properties. Edited by Chadwick, G.A. and Smith, D.A., Academic Press, New-York, 1976.Google Scholar
2. Ballufi, R.W., Grain Boundary Structure and Kinetics. Edited by Ballufi, R.W.. American Society for Metals, Metals Park, Ohio, 1980.Google Scholar
3. Kingery, W.D., J. Am. Ceram.Soc. 57, 1, 18(1974).Google Scholar
4.Grain Boundary Phenomena in Electronic Ceramics” edited by Levinson, M., American Ceramic Society, 1981.Google Scholar
5. Read, W.T. and Shockley, W., Phys. Rev., 78, 3, 275–89 (1950).CrossRefGoogle Scholar
6. Bollmann, W., Crystal Defects and Crystalline Interfaces, pp.143221. Springer-Verlag, New-York, 1970.Google Scholar
7. GOUX, C., Can. Met. Quart. 13, 1, 9–31 (1974).Google Scholar
8. Smith, D.A., Vitek, V. and Pond, R.C., Acta Met., 25, 5, 475–83 (1977).Google Scholar
9. Wolf, D. and Benedek, R., Grain Boundary Phenomena in Electronic Ceramics, Chicago, 1980, pp. 107113 in Ref. 4.Google Scholar
10. Wolf, D., Proc. “Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems”, Berkeley, 1980.Google Scholar
11. Shackelford, J.F. and Scott, W.D., J. Am. Ceram. Soc. 51, 12,688–92 (1968).Google Scholar
12. Chaudhari, P. and Charbnau, H., Surf. Sci. 31, 104–14 (1972).Google Scholar
13. Readey, D.W. and Jech, R.E., J. Am. Ceram. Soc. 51, 4,201208 (1968).Google Scholar
14. Dhalenne, G., Revcolevschi, A. and Gervais, A., Phys. Stat. Sol. (a) 56, 1, 267276 (1979).Google Scholar
15. Peterson, N.L., Wiley, C.L. and Faber, J., pp. 101–105 in Ref. 4.Google Scholar
16. McLean, D., pp. 44 in Grain Boundaries in Metals, Oxford, University Press, London, 1957.Google Scholar
17. Herring, C., chapter 8 in Physics of Powder Metallurgy, p. 157. Edited by Kingston, W.E.. Mac Graw-Hill Book Co., Inc., New-York, 1951.Google Scholar
18. Hodgson, B.K. and Mykura, H., J. Mat. Sci. 8, 33, 565–70 (1973).Google Scholar
19. Dhalenne, G., Déchamps, M. and Revcolevschi, A.. J. Amer. Ceram. Soc. 1, (1982) in press.Google Scholar
20. Mc. Carthy, K.A. and Chalmers, B., Can. J. Phys. 36 (1958) 1645.Google Scholar
21. Moment, R.L. and Gordon, R.B., J. Am. Ceram. Soc. 47 (1964) 570.Google Scholar
22. Gjostein, N.A. and Rhines, F., Acta Met. 7 (1959) 319.Google Scholar
23. Greenough, A.P. and King, R., J. Inst. Metals 79 (1951) 415.Google Scholar
24. Dunn, C.G., Daniels, F.W. and Bolton, M.J., J. Metals 188 (1950) 1245.Google Scholar
25. Allen, B.C., J. Less Common Metals 29 (1972) 263.Google Scholar
26. Hasson, G., Ph. D Thesis, Paris (1972).Google Scholar
27. Murr, L.E., Horylev, R.J. and Lin, W.N.,Phil. Mag. 22 (1970) 515.Google Scholar
28. Stoneham, A.M., J. Am. Ceram. Soc. 64 (1981) 54.Google Scholar
29. Livey, D.T. and Murray, P., J. Am. Ceram. Soc. 39 (1956) 363.Google Scholar
30. Stewart, R.F. and Mackrodt, W.C., J. Phys. C 7 (1976) 247.Google Scholar
31. Kingery, W.D., J. Am. Ceram. Soc. 37 (1954) 42.CrossRefGoogle Scholar
32. Nikolopoulos, P., Nazarré, S. and Thummler, F., J. Nuclear Mat. 71 (1977) 89.Google Scholar