Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:36:16.694Z Has data issue: false hasContentIssue false

Experimental Study of Mobile Dislocation Densities and Velocities through Transient Mechanical Tests

Published online by Cambridge University Press:  10 February 2011

B. Lo Piccolo
Affiliation:
Physics Department, Ecole Polytechnique Féérale, CH 1015 Lausanne, Switzerland
J.L. Martin
Affiliation:
Physics Department, Ecole Polytechnique Féérale, CH 1015 Lausanne, Switzerland
J. Bonneville
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, SP2MI, Bd 3-Té1éport 2 - B.P. 179, F 86960 Futuroscope Cedex
Get access

Abstract

The use of transient mechanical tests such as repeated load relaxations and repeated creep tests provide some insight on the respective contribution of mobile dislocation densities and velocities to the plastic strain-rate and also on the hardening mechanisms. Improvements of the second technique are reported as well as results on Ni3Al polycrystals. Other materials (e.g. Cu, TiAl) are considered for comparison. Correlations are found between dislocation exhaustion rates, workhardening coefficients and the amplitude of yield point at reloading after the relaxations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gilman, J.J., Austral. J. Phys. 13, 327 (1960).Google Scholar
2. Couret, A. and Caillard, D., Acta Metall. 3, 1455 (1985).Google Scholar
3. Tang, M., Devincre, B. and Kubin, L.P., Modelling Simul. Mater. Sci. Eng., 7, 893 (1999).Google Scholar
4. Gomez-Garcia, D., Devincre, B. and Kubin, L.P., this conference.Google Scholar
5. Moulin, A., Condat, M. and Kubin, L.P., Acta Mater. 47, 2879 (1999).Google Scholar
6. Spätig, P., PhD thesis n° 1407, Ecole Plytechnique Fédérale, Lausanne (1995).Google Scholar
7. Bonneville, J., Viguier, B. and Spätig, P., Scripta Mater. 36, 275 (1997).Google Scholar
8. Orlova, A., Bonneville, J. and Spätig, P., Mat. Sci. Engng, A 191, 85 (1995).Google Scholar
9. Piccolo, B. Lo, PhD thesis n° 2044, Ecole Polytechnique Fédérale, Lausanne (1999).Google Scholar
10. Martin, J.L., Matterstock, B., Spätig, P. and Bonneville, J., Proceedings of the 20th Risø Int. Symp. on Mater. Sci., Edit. Bilde-Sorensen, J.B., Carstensen, J.V., Hansen, W., Jensen, D. Juul, Leffers, T., Pantleon, W., Pedersen, O.B. and Winther, G., Roskilde, pp. 103121 (1999).Google Scholar
11. Martin, J.L., B. Lo Piccolo and Bonneville, J., to appear in Intermetallics, 2000.Google Scholar
12. Guiu, F. and Pratt, P.L., Phys. Stat. Sol. 6, 111 (1964).Google Scholar
13. Matterstock, B., Martin, J.L., Bonneville, J. and Kruml, T., Mater. Res. Symp. Proc. Vol. 552 (1999), Materials Research Society p. KK5.17.1-6.Google Scholar
14. Hemker, K.J., Mills, M.J. and Nix, W.D., Acta metall. mater., 39, 1901 (1991).Google Scholar
15. Devincre, B., Veyssière, P. and Saada, G., Phil. Mag. 79, 1609 (1999)Google Scholar
16. Caillard, D. and Molénat, G., Proc. of the 20th Risø Int. Symp. on Mater. Sci. Ibidem, p 123.Google Scholar
17. Dimiduk, D.M., Thompson, A.W. and Williams, J.C., Phil. Mag. A67, 675 (1993).Google Scholar
18. Kruml, T., Martin, J.L. and Bonneville, J., Phil. Mag. accepted for publication in 2000.Google Scholar