Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:26:07.690Z Has data issue: false hasContentIssue false

Experimental Studies On Diffusion Of Liquids In Porous Glass

Published online by Cambridge University Press:  21 February 2011

Yong Shao
Affiliation:
Texas Christian University, Physics Department, P. O. Box 32915, Fort Worth, TX 76129
Neil Koone
Affiliation:
Texas Christian University, Physics Department, P. O. Box 32915, Fort Worth, TX 76129
T. W. Zerda
Affiliation:
Texas Christian University, Physics Department, P. O. Box 32915, Fort Worth, TX 76129
Get access

Abstract

Diffusion coefficients of water and cyclohexane in porous sol-gel glass of average pore diameter 2.9 nm were obtained using a radioactive tracer technique. This information was applied to calibrate the membrane in the diaphragm cell which was subsequently used to measure the diffusion coefficients for cyclohexane, acetone, toluene, acetonitrile, and chloroform. Results for cyclohexane were compared with computer simulation of molecular motion of cyclohexane in a model cylindrical pore of diameter 2.9 nm. Translational motion of polar liquids inside the pores was found to be faster than that of neutral, not wetting solvents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Zerda, T. W., Brodka, A., Coffer, J., J. Non-Crystal. Sol., 168, 33 (1994)Google Scholar
2 Mitzithras, A., Coveney, F. M., Strange, J. H., J. Molec. Liq., 54, 273 (1992)Google Scholar
3 Karger, J., Lenzner, J., Pfeifer, H., Schwabe, H., Heyer, W., Janowski, F., Wolf, F., Zdanov, S. P., J. Am. Cer. Soc, 66, 69 (1983)Google Scholar
4 Bishop, M. T., Langley, K. H., Karasz, F. E., Macromolec. 22, 1220 (1989)Google Scholar
5 Zerda, T. W., in Chemical Processing of Advanced Materials, Eds. Hench, L. L., West, J., Wiley, New York, 1991 Google Scholar
6 Clunie, J. C., Li, N., Emerson, M. T., Baird, J. K., J. Phys. Chem., 94, 6099 (1990)Google Scholar
7 Yekta, A., Duhamel, J., Winnik, M. A., J. Chem. Phys., 97, 1554 (1992)Google Scholar
8 Tyrrell, H. J. V., Harris, K. R., Diffusion in Liquids, Butterworths, London, 1984 Google Scholar
9 Brodka, A., Zerda, T. W., J. Chem. Phys., 97, 8464 (1992)Google Scholar
10 Jakson, C. L., McKenna, G. B., J. Chem. Phys., 93, 9002 (1990)Google Scholar
11 Zerda, T. W., Shao, Y., Chem. Phys. Lett., 209, 247 (1993)Google Scholar
12 Koone, N., Zerda, T. W., Non-Crystal, J.. Sol., submittedGoogle Scholar
13 Crank, J., The Mathematics of Diffusion, Clarendon Press, Oxford, 1986 Google Scholar
14 Dozier, W. D., Drake, J. M., Klafter, J., Phys. Rev. Lett., 56, 197 (1986)Google Scholar
15 D'Orazio, F., Bhattacharja, S., Halperin, W. P., Eguchi, K., Mizusaki, T., Phys. Rev. 42B, 9810 (1990)Google Scholar
16 Sahimi, M., J. Chem. Phys., 96, 4718 (1992)Google Scholar
17 Fukuda, K., Kasuga, T., Mizusaki, T., Hirai, A., Eguchi, K., J. Phys. Soc. Japan, 58, 1662 (1989)Google Scholar
18 Barrer, R. M., Barrie, J. A., Proc. Roy. Soc., 213A, 250 (1952)Google Scholar