Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:26:00.287Z Has data issue: false hasContentIssue false

Experimental Investigation of GaAs Surface Oxidation

Published online by Cambridge University Press:  22 February 2011

S. Matteson
Affiliation:
Texas Instruments Incorporated, Materials Science Laboratory P.O. Box 225936, MS 147, Dallas, Texas 75265
R. A. Bowling
Affiliation:
Texas Instruments Incorporated, Materials Science Laboratory P.O. Box 225936, MS 147, Dallas, Texas 75265
Get access

Abstract

Experimental observations of the surface oxide chemistry of GaAs are reported for various commonly used chemical surface preparations. Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and ellipsometry were employed to obtain information regarding the stoichiometry, depth distribution, and oxide growth kinetics of thin surface oxides. Previous observations of the segregation in depth of Ga and As oxides are corroborated. Arsenic oxides tend to be found near the surface while Ga2O3 is found near the GaAs-oxide interface. The presence of elemental As was frequently detected at this interface, as well. Surfaces essentially free from oxide are shown to be produced by certain chemical treatments, and the state of the surface in the solution is inferred. It is shown that the GaAs surface oxide stoichiometry can undergo several changes in a short time when exposed to water and air. In addition, the characterization of the oxidation of GaAs by ozone in the presence of intense ultraviolet illumination is reported. The oxide primarily consists of Ga2O3 and exhibits an interesting growth kinetics: the thickness of the oxide proceeds at first linearly, then logarithmically, then parabolically. This behavior is explained in terms of various mechanisms which are dominant at different thicknesses of oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwartz, G. P., Gualtieri, G. J., Kammlott, G. W., and Schwartz, B., J. Electrochem. Soc. Solid State Sci. Technol. 126, 1737 (1979).Google Scholar
2. Watanabe, K., Hashiba, M., Hirohata, Y., Nishino, M. and Yamashina, T., Thin Solid Films 56, 63 (1979).Google Scholar
3. Landgren, G.,Ludeke, R., Jugnet, Y., Morar, J. F. and Himpsel, F. J., J. Vac. Sci. Technol. B 2, 351 (1984).Google Scholar
4. Webb, C. and Lichtensteiger, M., J. Vac. Sci. Technol. 22, 659 (1982).Google Scholar
5. Ley, L., Pollak, R. A., McFeely, F. R., Kowalczyk, S. P. and Shirley, D. A., Phys. Rev. B9, 600 (1974).Google Scholar
6. Pianetta, P., Lindau, I., Garner, C. M. and Spicer, W. E., Phys. Rev. B18, 2792 (1978).Google Scholar
7. Arthur, J. R., J. Appl. Phys. 38, 4023 (1967).Google Scholar
8. Thurmond, C. D., Schwartz, G. P., Kammlott, G. W., and Schwartz, B., J. Electrochem. Soc. 127,1366 (1967).CrossRefGoogle Scholar
9. Iwasaki, H., Mizokawa, Y., Nishitani, R. and Nakamura, S., Jap. J. Appl. Phys. 17, 315 (1978).Google Scholar
10. Shiota, I., Miyamoto, N. and Nishizawa, J., J. Electrochem. Soc. 124, 1405 (1977).Google Scholar
11. Petro, W. G., Hino, I., Eglas, S., Lindau, I., Su, C. Y. and Spicer, W. E., J. Vac. Sci. Technol. 21, 405 (1982).Google Scholar
12. Wang, X., Reyes-Mena, A. and Lichtman, D., J. Electrochem. Soc. 129, 851 (1982).Google Scholar
13. Kowalczyk, S. P., Waldrop, J. R. and Grant, R. W., J. Vac. Sci. Technol. 19, 611 (1981).Google Scholar
14. Chang, C. C., Citrin, P. H. and Schwartz, B., J. Vac. Sci. Technol. 14, 943 (1977).CrossRefGoogle Scholar
15. Betrand, P. A., J. Vac. Sci. Technol. 18, 28 (1981).Google Scholar
16. Flamm, D. and Weber, E.-H., Phys. Stat. Solidi A 76, K163 (1983).CrossRefGoogle Scholar
17. Oda, T. and Sugano, T., Jap. J. Appl. Phys. 15, 1317 (1976).Google Scholar
18. Takagi, H., Kano, G. and Teramoto, I., J. Electrochem. Soc. 125, 579 (1978).Google Scholar
19. Matsumura, M., Ishida, M., Suzuki, A. and Hara, K., Jap. J. Appl. Phys. 20, L726 (1981).Google Scholar
20. Leonhardt, G., Berndtsson, A., Hedman, J., Klasson, M., Nilsson, R. and Nordling, C., Phys. Stat. Solidi B 60, 244 (1973).Google Scholar
21. Cardona, M., Penchina, C. M., Shevchik, N. and Tejeda, J., Solid Stat Comm. 11, 1655(1972).Google Scholar
22. Gudat, W., Koch, E. E., Yu, P. Y., Cardona, M and Penchina, C. M., Phys. Stat. Solidi. B 52, 505 (1972).Google Scholar
23. Lane, T., Veseley, C. J. and Langer, D. W., Phys. Rev. B 6, 3770 (1972).Google Scholar
24. Suzuki, T. and Ogawa, M., Appl. Phys. Lett. 33, 312 (1978).Google Scholar
25. Woodall, J. M., Oelhafen, P., Jackson, T. N., Freeouf, J. L. and Petit, G. D., J. Vac. Sci. Technol. B 1, 795 (1983).CrossRefGoogle Scholar
26. Oren, R. and Ghandhi, S. K., J. Appl. Phys. 42, 752 (1971).Google Scholar
27. Schafer, S. A. and Lyon, S. A., J. Vac. Sci. Technol. 19, 494 (1981).Google Scholar
28. Cardona, M. and Greenway, D. L., Phys. Rev. 131, 98 (1963).Google Scholar
29. Bermudez, V. M., J. Appl. Phys. 54, 6795 (1983).Google Scholar
30. Vasquez, R. P., Lewis, B. F. and Grunthaner, F. J., J. Vac. Sci. Technol. B 1, 791 (1983).Google Scholar
31. McClintock, J. A., Wilson, R. A. and Byer, N. E., J. Vac. Sci. Technol. 20, 241 (1982).Google Scholar
32. Vig, R. and Lebus, J. W., IEEE Trans. Parts Hybrids Packg. PHP–12, 365 (1976).Google Scholar
33. Horvath, M., Bilitzky, L. and Huttner, J., Ozone (Elsevier, Amsterdam,1985) 104.Google Scholar
34. Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light (North-Holland, Amsterdam,1977).Google Scholar
35. Aspnes, D. E. and Studna, A. A., Phys. Rev. B 27, 985 (1983).Google Scholar
36. Weast, R. C., ed. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla.,1984) B-71.Google Scholar
37. Lukes, F., Surface Sci. 30, 91 (1972).Google Scholar
38. Ritchie, I. M. and Hunt, G. L., Surface Sci. 15, 524 (1969).Google Scholar