Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T18:37:10.010Z Has data issue: false hasContentIssue false

Experimental Determination of Continuous Cooling Transformation Diagrams of Hot-Rolled Heat Treatable Steel Plates Using Quenching Dilatometry

Published online by Cambridge University Press:  02 March 2016

Gerardo Altamirano-Guerrero
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Industria Metalúrgica 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila, México.
Emmanuel J. Gutiérrez-Castañeda
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Industria Metalúrgica 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila, México.
Omar García-Rincón
Affiliation:
Ternium México, S.A. de C.V. Avenida Universidad 992, Cuauhtémoc, 66450, San Nicolás de los Garza, N.L. México.
Armando Salinas-Rodríguez
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Industria Metalúrgica 1062, Parque Industrial Saltillo-Ramos Arizpe, C.P. 25900, Ramos Arizpe, Coahuila, México.
Get access

Abstract

This article outlines the use of quenching dilatometry in phase transformation kinetics research in steels under continuous cooling conditions. For this purpose, the phase transformation behavior of a hot-rolled heat treatable steel was investigated over the cooling rate range of 0.1 to 200 °C/s. The start and finish points of the austenite transformation were identified from the dilatometric curves and then the continuous cooling transformation (CCT) diagrams were constructed. The experimental CCT diagrams were verified by microstructural characterization using scanning electron microscopy (SEM) and Vickers micro-hardness. In general, results revealed that the quenching dilatometry technique is a powerful tool for the characterization and study of solid-solid phase transformations in steels. For cooling rates between 200 and 25 °C/s the final microstructure consists on plate-like martensite with the highest hardness values. By contrast, a mixture of phases of ferrite, bainite and pearlite predominated for slower cooling rates (10-0.1 °C/s).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhao, J.C. and Notis, M.R., Mater. Sci. Eng. Rep. 15, 135207 (1995).CrossRefGoogle Scholar
García de Andrés, C., Caballero, F.G., Capdevila, C. and Álvarez, L.F., Mater. Charact. 48, 101111 (2002).CrossRefGoogle Scholar
Smith, Y.E. and Siebert, C.A., Metall. Trans. ASM. 2A, 17111725 (1971).Google Scholar
Manohar, P.A., Chandra, T. and Killmore, C.R., ISIJ Int. 36, 14861493 (1996).CrossRefGoogle Scholar
Thompson, S.W., Colvin, D.J. and Krauss, G., Metall. Trans. A. 21, 14931507 (1990).CrossRefGoogle Scholar
Thompson, W., Colvin, D.J. and Krauss, G., Metall. Mater. Trans. A. 27, 15571571 (1996).CrossRefGoogle Scholar
Katsumata, M., Ishiyama, O., Inoue, T. and Tanaka, T., Metall. Trans. JIM. 32, 715728 (1991).Google Scholar
Xu, Guang, Wan, Lun, Yu, Shengfu, Liu, Li and Luo, Feng, Mater. Lett. 62, 39783980 (2008).CrossRefGoogle Scholar
Dobrzański, L.A. and Trzaska, J., J. Mater. Process. Technol. 157-158, 107113 (2004).CrossRefGoogle Scholar
Dobrzański, L.A. and Trzaska, J., J. Mater. Process. Technol. 155-156, 19501955 (2004).CrossRefGoogle Scholar
Pawłowski, B., JAMME. 54/2, 185193 (2012).CrossRefGoogle Scholar
Prior, G.K., Mater. Forum 18, 265276 (1994).Google Scholar
Trzaska, J. and Dobrzanski, L.A.. Mater. Process. Technol. 192-193, 504510 (2007).CrossRefGoogle Scholar
Farrar, R.A, J. Mater. Sci. Letters 12, 16061611 (1993).CrossRefGoogle Scholar
Alvarado-Meza, M.A, García-Sanchez, E., Covarrubias-Alvarado, O., Salinas-Rodriguez, A., Guerrero-Mata, M.P and Colás, R., J. Mater. Eng. Perform. 22, 345350 (2013).CrossRefGoogle Scholar
San Martin, D., de Cock, T., García-Junceda, A., Caballero, F.G., Capdevila, C. and García de Andrés, C., Mater. Sci. Technol. 24/3, 266272 (2008).CrossRefGoogle Scholar
Altamirano, G., Mejía, I., Hernández-Expósito, A. and Cabrera, J.M., in Advanced Structural Materials-2012, edited by Calderon, H., Balmori, H.A. and Salinas, A., (Mater. Res. Soc. Symp. Proc. 1485, Pittsburgh, PA, 2012), pp. 8388.Google Scholar