Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:20:17.406Z Has data issue: false hasContentIssue false

Experimental Design and Investigation of Novel Pulsed Laser Deposited Structures for YBCO Based Coated Conductors

Published online by Cambridge University Press:  07 November 2013

Francesco Rizzo
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Antonella Mancini
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Angelo Vannozzi
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Andrea Augieri
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Achille Angrisani Armenio
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Fabio Fabbri
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Valentina Galluzzi
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Alessandro Rufoloni
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Giuseppe Celentano
Affiliation:
Superconductivity Laboratory, Fusion Technical Unit – ENEA Frascati Research Centre, Via E. Fermi 45, Frascati, 00044, Italy
Get access

Abstract

The study of high quality YBa2Cu3O7-x (YBCO) based superconducting films is a fundamental issue to be addressed when dealing with the realization of efficient coated conductors with large current carrying capacity. In this perspective the investigation of innovative buffer layers structures able to allow epitaxial YBCO film grow on metallic substrates and to prevent contamination and degradation issues holds a central role.

In this work we thoroughly study the properties of YBCO films grown by means of pulsed lasers deposition on CeO2 template on both bare MgO single crystal and MgO-homoepitaxial/MgO single crystal substrates. Due to its high chemical and temperature stability the MgO reduces the oxygen diffusion effects. On the other hand, the CeO2 layer, pulsed laser deposited, prevents the YBCO film from metallic contamination and facilitates its epitaxial growth. Morphology and crystalline structure of buffer layers and superconductors film are investigated by using scanning electron microscopy (SEM), X-ray and electrons back-scattered diffraction techniques (XRD and EBSD).

YBCO films show good critical temperature values (Tc > 87K) with sharp transitions. These encouraging results make our structures promising candidates in the realization of high quality YBCO based coated conductors.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

See, for instance, Superpower(www.superpower-inc.com), American Superconductor (www.amsc.com) and Brucker (www.brucker-est.com).Google Scholar
Larbalestier, D., Gurevich, A., Feldmann, D. M., and Polyanskii, A., Nature 414, 368 (2001).10.1038/35104654CrossRefGoogle Scholar
Xiong, Xuming SuperPower Inc., Schenectady, Lenseth, Kenneth, P.; Reeves, Jodi, L.; Rar, Andrei, L.; Qiao, Yunfei;Schmidt, Robert, M.; Chen, Yimin; Li, Yijie; Xie, Yi-Yuan, Y.;Selvamanickam, Venkat, IEEE Trans.. on Appl. Supercond, 17 (2), 3375 (2007).10.1109/TASC.2007.899450CrossRefGoogle Scholar
Ma, B., Li, M., Koritala, R. E., Fisher, B. L., Markowitz, A. R., Erck, R. A., Baurceanu, R., Dorris, S. E., Miller, D. J. and Balachandran, U., Supercond. Sci. Technol. 16, 464 (2003).10.1088/0953-2048/16/4/308CrossRefGoogle Scholar
Zilbauer, T., Berberich, P., Lumkemann, A., Numssen, K, Wassner, T and Sigl, G, Supercond. Sci. Technol. 19, 1118 (2006).10.1088/0953-2048/19/11/005CrossRefGoogle Scholar
Groves, J. R., Arendt, P. N., Foltyn, S. R., Jia, Q. X., Holesinger, T. G., Emmert, L. A., De Paula, R. F., Dowden, P. C. and Stan, L., IEEE Trans.. on Appl. Supercond, 13 (2), 2651 (2003).10.1109/TASC.2003.811937CrossRefGoogle Scholar
Kawagishi, K., Komori, K., Fukutomi, M. and Togano, K., Supercond. Sci. Technol. 13, 1553 (2000).10.1088/0953-2048/13/11/308CrossRefGoogle Scholar
Vannozzi, A., Galluzzi, V., Rufoloni, A., Augieri, A., Angrisano Armenio, A., Ciontea, L., Thalmer, Gy, Petrisor, T., and Celentano, G., IEEE Trans. on Appl. Supercond, 21 (3), 2908 (2011).10.1109/TASC.2010.2081331CrossRefGoogle Scholar
Li, Chun, Wu, Ruqian, and Freeman, A. J., Phys. Rev. B 48, 8317 (1993).10.1103/PhysRevB.48.8317CrossRefGoogle ScholarPubMed
Li, M., Zhao, X., Ma, B., Dorris, S. E., Balachandran, U., Maroni, V. A., Applied Surface Science 253, 7172 (2007).10.1016/j.apsusc.2007.02.186CrossRefGoogle Scholar
Rickart, M., Roos, B. F. P., Mewes, T., Jorzick, J., Demokritov, S. O., Hillebrands, B., Surface Science 495, 68 (2001).10.1016/S0039-6028(01)01504-7CrossRefGoogle Scholar
Dégardin, A. F., Houzé, F., and Kreisler, A. J., IEEE Trans. on Appl. Supercond, 13 (2), 2721 (2003).10.1109/TASC.2003.811966CrossRefGoogle Scholar
Aswal, D. K., Muthe, K. P., Tawde, S., Chodhury, S., Bagkar, N., Singh, A., Gupta, S. K., Yakhmi, J. V., Journal of Crystal Growth 236, 661 (2002).10.1016/S0022-0248(02)00852-7CrossRefGoogle Scholar
Zhang, X., Kronawitter, Coleman X., Berdahl, P., and Mao, S. S., J. Appl. Phys. 111, 093530 (2012).10.1063/1.4710953CrossRefGoogle Scholar