Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:38:06.443Z Has data issue: false hasContentIssue false

Experimental and Theoretical Studies of the Si(100)/SiO2 Interface Formed by Wet and Dry Oxidation

Published online by Cambridge University Press:  11 February 2011

A. Roy Chowdhuri
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, Chicago, Illinois 60607–7000., USA.
Dong-Un Jin
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, Chicago, Illinois 60607–7000., USA.
C. G. Takoudis
Affiliation:
Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, Chicago, Illinois 60607–7000., USA.
Get access

Abstract

Interfacial strain and substoichiometric silicon oxides are the two principal causes that result in the redshift of the transverse and longitudinal optical phonons of the asymmetric stretch of O in the Si-O-Si bridging bond of thermal SiO2 with decreasing oxide thickness. Analyses to comprehend these effects, therefore, require consideration of both strain and interfacial substoichiometry. A method to isolate the contributions of strain and suboxide content towards the observed shifts is proposed. The procedure, which utilizes simple optical model and effective medium approximation, allows estimation of the average strain and suboxide concentration in films of different thickness. Analyses of oxides formed at two different temperatures (550 and 700°C) with dry and wet oxygen reveal how process conditions affect the interface properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.See, for example, The Physics and Chemistry of SiO2 and Si-SiO2 Interface 2, edited by Helms, C. R. and Deal, B. E., Plenum Press, New York, (1993).Google Scholar
2. Himpsel, F. J., McFeely, F. R., Taleb–Ibrahimi, A., Yarmoff, J. A., and Hollinger, G., Phys. Rev. B 38, 60846096 (1988).Google Scholar
3. Grunthaner, P. J., Hecht, M. H., Grunthaner, F. J., and Johnson, N. M., J. Appl. Phys. 61, 629 (1987).Google Scholar
4. Szekeres, A., Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, Kluwer Academic Publishers, 6578 (1998).Google Scholar
5. Feldman, L. C., Gusev, E. P., and Garfunkel, E., Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by Garfunkel, E., Gusev, E. P., and Vul, A. (Kluwer Academic Publishers, Netherlands, 1998), pp. 124.Google Scholar
6. Queeney, K. T., Weldon, M. K., Chang, J. P., Chabal, Y. J., Gurevich, A. B., Sapjeta, J. and Opila, R. L., J. Appl. Phys. 87, 1322 (2000).Google Scholar
7. Martinet, C. and Devine, R. A. B., J. Appl. Phys. 77, 4343 (1995).Google Scholar
8. Ono, H., Ikarashi, Taeko, Ando, Koichi, and Kitano, Tomohisa, J. Appl. Phys. 84, 6064 (1998).Google Scholar
9. Miyazaki, S., Nishimura, H., Fukuda, M., Ley, L., and Ristein, J., Appl. Surf. Sci. 113/114, 585 (1997).Google Scholar
10. Boyd, I. W. and Wilson, J. I. B., J. Appl. Phys. 62, 3195 (1987).Google Scholar
11. Himcinschi, C., Milekhin, A., Friedrich, M., Hiller, K., Wiemer, M., Gessner, T., Schulze, S., and Zahn, D. R. T., App Surf Sci 175–176, 715 (2001).Google Scholar
12. Devine, R. A. B., Appl. Phys. Lett. 68, 3108 (1996).Google Scholar
13. Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light, Elsevier, Amsterdam, 1987.Google Scholar
14. Handbook of Optical Constants of Solids, edited by Palik, E. D. (Academic, NewYork, 1985).Google Scholar
15. Lehmann, A., Schumann, L., and Hubner, K., Phys. Stat. Sol. b 117, 689 (1983).Google Scholar
16. Fitch, J. T., Lucovsky, G., Kobeda, E., and Irene, E. A., J. Vac. Sci. Technol. B 7, 153 (1989).Google Scholar
17. Bruggeman, D. A. G., Ann. Phys. 24, 636 (1935).Google Scholar
18. Ohwaki, T. and Takeda, M., Takai, Y., Jpn. J. Appl. Phys. 36, 5507 (1997).Google Scholar
19. Watanabe, T. and Ohdomari, I., Thin Solid Films 343–344, 370 (1999).Google Scholar
20. Garrido, B., Gessinn, F., Prom, J. L., Morante, J. R., Samitier, J., and Sarrabayrouse, G., The Physics and Chemistry of SiO2 and the Si-SiO2 interface 2, (Plenum Press, New York, 1993).Google Scholar
21. Ng, K.-O. and Vanderbilt, D., Phys. Rev. B 59, 10132 (1999).Google Scholar
22. Helms, C. R., Johnson, N. M., Schwarz, S. A., and Spicer, W. E., J. Appl. Phys. 50, 1067 (1979).Google Scholar
23. Oh, J. H., Yeom, H. W., Hagimoto, Y., Ono, K., Oshima, M., Hirashita, N., Nywa, M., Toriumi, A., and Kakizaki, A., Phys. Rev. B 63, 205310 (2001)Google Scholar
24. Lu, Z. H., Graham, M. J., Tay, S. P., Jiang, D. T., and Tan, K. H., J. Vac. Sci. Technol. B 13, 1626 (1995).Google Scholar