Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:51:32.291Z Has data issue: false hasContentIssue false

Excitons bound to surface defects in GaN

Published online by Cambridge University Press:  11 February 2011

M. A. Reshchikov
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
D. Huang
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
H. Morkoç
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
Get access

Abstract

Sharp intense peaks are sometimes detected in the low-temperature photoluminescence (PL) spectrum of undoped GaN samples in the photon energy range of 3.0 – 3.46 eV. Some of these peaks can be attributed to excitons bound to dislocations and inversion domains, whereas some others originate from the GaN surface because they can be affected essentially by surface treatment. In our samples, grown by molecular beam epitaxy on sapphire substrate, the 3.42 eV peak always disappeared after removing the surface layer by etching for a few seconds in hot phosphoric acid. Atomic force microscopy images confirmed that such light etching modifies the surface morphology, although the etched depth is negligibly small. Moreover, intensities of two other peaks (at 3.32 and 3.35 eV) were observed to depend on sample etching, as well as on the length of subsequent exposure to air. The 3.32 and 3.35 eV peaks evolved with time of UV illumination, increasing by several times and demonstrating memory effect at low temperature. We attribute the 3.42 and 3.35 eV peaks to bound excitons, whereas the 3.32 eV peak is tentatively attributed to a surface donor-acceptor pair transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rebane, Y. T. and Steeds, J. W., Phys. Rev. B 48, 14963 (1993).Google Scholar
2. Ohnishi, N., Makita, Y., Asakura, H., Iida, T., Yamada, A., Shibata, H., Uekusa, S., and Matsumori, T., Appl. Phys. Lett. 62, 1527 (1993).Google Scholar
3. Reshchikov, M. A., Yun, F., Huang, D., He, L., Morkoç, H., Park, S. S., and Lee, K. Y., Mat. Res. Soc. Symp. Proc. 722, K1.4 (2002).Google Scholar
4. Dingle, R. and Ilegems, M., Sol. St. Commun. 9, 175 (1971).Google Scholar
5. Chung, B. C. and Gershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
6. Ren, B. G., Orton, J. W., Cheng, T. S., Dewsnip, D. J., Lacklison, D. E., Foxon, C. T., Malloy, C. H., and Chen, X., MRS Internet J. Nitride Semicond. Res. 1, 22 (1996).Google Scholar
7. Calleja, E., Sánchez-García, M. A., Sánchez, F. J., Calle, F., Naranjo, F. B., Munoz, E., Jahn, U., and Ploog, K., Phys. Rev. B 62, 16826 (2000).Google Scholar
8. Shreter, Y. G., Rebane, Y. T., Davis, T. J., Barnard, J., Darbyshire, M., Steeds, J. W., Perry, W. G., Bremser, M. D., and Davis, R. F., Mat. Res. Soc. Symp. Proc. 449, 683 (1997).Google Scholar
9. Mah, K. W., Mosnier, J.-P., McGlynn, E., Henry, M. O., O'Mahony, D., and Lunney, J. G., Appl. Phys. Lett. 80, 3301 (2002).Google Scholar
10. Rieger, W., Dimitrov, R., Brunner, D., Rohrer, E., Ambacher, O., and Stutzmann, M., Phys. Rev. B 54, 17596 (1996).Google Scholar
11. Martinez-Criado, G., Cros, A., Cantareo, A., Dimitrov, R., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 88, 3470 (2000).Google Scholar
12. Cazzanelli, M., Cole, D., Donegan, J. F., Lunney, J. G., Middleton, P. G., O'Donnell, K. P., Vinegoni, C., and Pavesi, L., Appl. Phys. Lett. 73, 3390 (1998).Google Scholar
13. Wetzel, C., Fisher, S., Krüger, J., Haller, E. E., Molnar, R. J., Moustakas, T. D., Mokhov, E. N., and Baranov, P. G., Appl. Phys. Lett. 68, 2556 (1996).Google Scholar
14. Meyer, B. K., Volm, D., Wetzel, C., Eckey, L., Holst, J.-Ch., Maxim, P., Heitz, R., Hoffmann, A., Broser, I., Mokhov, E. N., Baranov, P. G., Qiu, C., and Pankove, J. I., Mat. Res. Soc. Proc. 378, 521 (1995).Google Scholar
15. Huang, D., Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Baski, A. A., King, T., and Morkoç, H., Appl. Phys. Lett. 78, 4145 (2001).Google Scholar
16. Reshchikov, M. A., Yi, G.-C., and Wessels, B. W., MRS Internet J. Nitride Semicond. Res. 4S1, G11.8 (1999).Google Scholar
17. Levine, J. D., Phys. Rev. 140, A586 (1965).Google Scholar