Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:29:39.034Z Has data issue: false hasContentIssue false

Exciton photoluminescence and energy transfer in nanocrystalline Si/ Si dioxide superlattice structures

Published online by Cambridge University Press:  01 February 2011

V. Yu. Timoshenko
Affiliation:
Moscow State M.V. Lomonosov University, Physics Department, 119992 Moscow, Russia
O. A. Shalygina
Affiliation:
Moscow State M.V. Lomonosov University, Physics Department, 119992 Moscow, Russia
M. G. Lisachenko
Affiliation:
Moscow State M.V. Lomonosov University, Physics Department, 119992 Moscow, Russia
P. K. Kashkarov
Affiliation:
Moscow State M.V. Lomonosov University, Physics Department, 119992 Moscow, Russia
D. Kovalev
Affiliation:
Munich Technical University, Physics Department E16, 85747 Garching, Germany
J. Heitmann
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
M. Zacharias
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
B. V. Kamenev
Affiliation:
Electrical and Computer Engineering Department, New Jersey Institute of Technology, University Heights, Newark NJ 07102
L. Tsybeskov
Affiliation:
Electrical and Computer Engineering Department, New Jersey Institute of Technology, University Heights, Newark NJ 07102
Get access

Abstract

Photoluminescence (PL) of nanocrystalline Si (nc-Si) assemblies formed by thermal crystallization of amorphous Si/SiO2 and SiO/SiO2 superlattices (SLs) has been investigated at different temperatures and excitation conditions. The low temperature resonant PL spectroscopy reveals phonon-assisted excitonic recombination. At room temperature the samples formed from a-SiO/SiO2 SLs possess relatively high PL quantum yield (∼ 1%). The PL transients have non-exponential decay, which indicates the exciton energy transfer in nc-Si ensembles. The excitonic energy of Er-doped nc-Si SL structures can be almost completely transferred to Er ions incorporated in SiO2 matrix that results in a strong emission line at 0.81 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsybeskov, L., Hirschman, K. D., Duttagupta, S. P., Zacharias, M., Fauchet, P. M., McCaffrey, J. P., and Lockwood, D. J., Appl. Phys. Lett. 72, 43 (1998).Google Scholar
2. Zacharias, M., Heitmann, J., Shcholz, R., Kahler, U., Schmidt, M., Bläsing, J., Appl. Phys. Lett. 80, 661 (2002).Google Scholar
3. Tsybeskov, L., Grom, G. F., Krishnan, R., Montes, L., Fauchet, P. M., Kovalev, D., Diener, J., Timoshenko, V., Koch, F., McCaffrey, J. P., Baribeau, J.-M., Sproule, G. I., Lockwood, D. J., Niquet, Y. M., Delerue, C., and Allan, G., Europhys. Lett. 55, 552 (2001).Google Scholar
4. Schmidt, M., Heitmann, J., Scholz, R., Zacharias, M., J. Non-Cryst. Sol. 299–302, 678 (2002).Google Scholar
5. Grom, G. F., Lockwood, D. J., McCaffrey, J. P., Labbe, H., Fauchet, P. M., White, B., Dienner, J., Kovalev, D., Koch, F., and Tsybeskov, L., Nature 407, 358361 (2000).Google Scholar
6. Kovalev, D., Heckler, H., Polisski, G., Koch, F., Phys. Stat. Sol. (b) 215, 871 (1999).Google Scholar
7. Pavesi, L. and Roman, H. E. in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W., Tsai, Ch. Ch., Hiroshe, M., Koch, F., and Brus, L. (Mat. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995) pp. 545554.Google Scholar
8. Förster, Th., Annal. Phys. 6, 55 (1948).Google Scholar
9. Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Phys.: Condens. Matter 5, L91 (1993).Google Scholar
10. Takeoka, S., Fujii, M., Hayashi, S., Phys. Rev. B 62, 16820 (2000).Google Scholar
11. Dexter, D. L, J. Chem. Phys. 21, 836 (1953).Google Scholar