Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:42:54.528Z Has data issue: false hasContentIssue false

Exciton Magnetoluminescence Studies in Ordered and Disordered In0.48Ga0.52P Semiconductor Alloys

Published online by Cambridge University Press:  25 February 2011

E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM
S. K. Lyo
Affiliation:
Sandia National Laboratories, Albuquerque, NM
R. P. Schneider Jr
Affiliation:
Sandia National Laboratories, Albuquerque, NM
Get access

Abstract

We report the observation of magnetic-field dependent excitonic photoluminescence energies and linewidths in ordered and disordered In0.48Ga0.52P alloys (lattice matched to GaAs). The photoluminescence measurements were made at 1.4 K and the applied magnetic field ranged between 0 and 13.6 tesla. With increasing magnetic fields, we observe increasing photoluminescence linewidths for disordered alloys and decreasing photoluminescence linewidths for the ordered alloys. The magnetic field dependence of the photoluminescence peak-energy shifts for all samples (ordered and disordered) is in good agreement with theoretical considerations. The presence of CuPt-type ordering was confirmed by transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example Gomyo, A., Suzuki, T., Kawata, S., Hino, I., and Yuasa, T., Appl. Phys. Lett. 50, 673 (1987).Google Scholar
2. Delong, M. C., Taylor, P. C., and Olson, J. M., Appl. Phys. Lett. 57, 620 (1990).Google Scholar
3. Fouquet, J. E., Robbins, V. M., Rosner, J., and Blum, O., Appl. Phys. Lett. 57, 1566 (1990).Google Scholar
4. Schneider, R. P. Jr, Jones, E. D., Lott, J. A., and Bryan, R. P., to be published, J. Appl. Phys. 1992 Google Scholar
5. Jones, E. D., Schneider, R. P. Jr, Lee, S. M. and Bajaj, K. K., Phys. Rev. B 46, 7225 (1992).Google Scholar
6. Jones, E. D. and Wickstrom, G. L., Southwest Conference on Optics, SPJE 540, 362 (1985).Google Scholar
7. Lee, S. M. and Bajaj, K. K., Appl. Phys. Lett. 60, 853 (1992).Google Scholar
8. Ihm, Y-E, Otsuka, N., Klem, J., and Morkoc, H., Appl. Phys. Lett. 51, 2013 (1987).Google Scholar
9. Klem, J., Chyi, J.-I., Morkoc, H., Ihm, Y E., and Otsuka, N., Micro-Optoelectronics Materials SPIE 877, 35 (1988).Google Scholar
10. Kurtz, S. R., Dawson, L. R., Biefeld, R. M., Follestaedt, D. M., Doyle, B. L., Phys. Rev. B 46, 1909 (1992).Google Scholar
11. Bellon, P., Chevalier, J. P., Martin, G. P., Dupont-Nivet, E., Thiebaut, C., and Andrée, J. P., Appl. Phys. Lett. 52, 567 (1988).Google Scholar
12. Okuda, H., Kondo, M., Kato, K., and Nakajima, K., Appl. Phys. Lett. 56, 337 (1990).Google Scholar
13. Chen, G. S., Wang, T. Y., and Stringfellow, G. B., Appl. Phys. Lett. 56, 1463 (1990).Google Scholar
14. Mena, R. A., Sanders, G. D., and Bajaj, K. K., and Dudley, S. C., J. Appl. Phys. 70, 1866 (1991).Google Scholar
15. Lyo, S. K. (unpublished).Google Scholar