Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T16:55:55.514Z Has data issue: false hasContentIssue false

Excitation Spectroscopy on Silicon Using Color Center Lasers Study of the Thermally Induced P Line (0.767eV) Defect

Published online by Cambridge University Press:  28 February 2011

J. Wagner
Affiliation:
Max—Planck—Institut für Festkötidle;rperforschung, Heisenbergstr. 1, D–7000 Stuttgart 80, F. R., Germany
A. Dörnen
Affiliation:
Physikalisches Institut (Teii 4) der Universität Stuttgart Pfaffenwaldring 57, D—7000 Stuttgart 80, F. R., Germany
R. Sauer
Affiliation:
Physikalisches Institut (Teii 4) der Universität Stuttgart Pfaffenwaldring 57, D—7000 Stuttgart 80, F. R., Germany
Get access

Abstract

Recently developed tunable color center lasers allow to extend the experimental technique of excitation spectroscopy to the 1–2 μm region. This spectral range is of special interest for the study of luminescent defects in silicon. We discuss the color center laser systems available at present and their application to defect spectroscopy. As an example, results on the 0.767 eV (P line) defect in silicon are presented. Excitation spectroscopy reveals several high lying excited electronic states. They are interpreted as effective—mass—like states of a pseudo-donor with an ionization energy of 34.3 meV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cohen, E., Sturge, M. D., Lipari, N. D., Altarelli, M., and Baldereschi, A., Phys. Rev. Lett. 35, 1591 (1975).CrossRefGoogle Scholar
[2] Cohen, E. and Sturge, M. D., Phys. Rev. B 15, 1039 (1977).CrossRefGoogle Scholar
[3] Monemar, B., Gislason, H. P., Dean, P. J., and Herbert, D. C., Phys. Rev. B 25, 7719 (1982).CrossRefGoogle Scholar
[4] Gislason, H. P., Monemar, B., Dean, P. J., Herbert, D. C., Depinna, S., Cavenett, B. C., and Killoran, N., Phys. Rev. B 26, 827 (1982).CrossRefGoogle Scholar
[5] Gellermann, W., Koch, K. P., and LUty, F., Laser Focus, April 1982, p. 71, and further references therein.Google Scholar
[6] Mollenauer, L. F. in “Methods of Experimental Physics”, (Academic, 1979), Vol. 15, Part B, Chapter 6, and further references therein.Google Scholar
[7] Thewalt, M. L. W., Watkins, S. P., Ziemelis, U. O., Lightowlers, E. C., and Henry, M. O., Solid State Commun. 44, 573 (1982).Google Scholar
[8] Watkins, S. P., Thewalt, M. L. W., and Steiner, T., Phys. Rev. B 29, 5727 (1984).Google Scholar
[9] Wagner, J., Weber, J., and Sauer, R., Solid State Commun. 39, 1279 (1981).CrossRefGoogle Scholar
[10] Wagner, J. and Sauer, R., Phys. Rev. B 26, 3502 (1982).CrossRefGoogle Scholar
[11] Thonke, K., Weber, J., Wagner, J., and Sauer, K., Physica 116 B, 252 (1983) - Proceedings 12 th Internat. Conf. Defects Semicond., Amsterdam 1982, edited by C. A. J. Ammerlaan (North Holland, 1983).Google Scholar
[12] Wagner, J. and Sauer, R., Physica 117B/118B, 113 (1983) - Proceedings 1 7 th Internat. Conf. Physics Semicond., Montpellier 1982, edited by M. Averous (North Holland, 1983).Google Scholar
[13] Wagner, J. and Sauer, R., Phys. Rev. B 27, 183 (1983).Google Scholar
[14] Wagner, J., Thonke, K., and Sauer, R., Phys. Rev. B 29, 7051 (1984).Google Scholar
[15] Mollenauer, L. F., Bloom, D. L., and DelGaudio, A. M., Opt. Lett. 3, 48 (1978).CrossRefGoogle Scholar
[16] Mollenauer, L. F., Opt. Lett. 5, 188 (1980).CrossRefGoogle Scholar
[17] Eisele, H., Paus, H. J., and Wagner, J., IEEE J. Quantum Electron. 18, 152 (1982).CrossRefGoogle Scholar
[18] Gellermann, W., LUty, F., and Pollak, C. R., Opt. Commun. 39, 391 (1981).CrossRefGoogle Scholar
[19] Mollenauer, L. F., Vieira, N. D., and Szeto, L., Opt. Lett. 7, 414 (1982).Google Scholar
[20] Pollak, C. R., Tittel, F. K., and Litfin, G., Proceedings Internat. Conf. on Lasers, New Orleans (STS McLean, Virginia, 1980), p. 123.Google Scholar
[21] Eisele, H., Paus, H. J., Wagner, J., and Leduc, M., J. Appl. Phys. 54, 4821 (1983).Google Scholar
[22] Litfin, G. and Beigang, R., J. Phys. E II, 984 (1978).Google Scholar
[23] Wagner, J., Phys. Rev. B 29, 2002 (1984).Google Scholar
[24] Minaev, N. S. and Mudryi, A. V., Phys. Status Solidi (a) 68, 501 (1981).CrossRefGoogle Scholar
[25] Weber, J. and Sauer, R., Mat. Res. Soc. Symp. Proc. 14, 165 (1983).CrossRefGoogle Scholar
[26] Tajima, M., Stallhofer, P., and Huber, D., Jpn. J. Appl. Phys. 22, L586 (1983).Google Scholar
[27] Magnea, N., Lazrak, A., and Pautrat, J. L., Appl. Phys. Lett. 45, 60 (1984).Google Scholar
[28] Ddrnen, A., Sauer, R., and Weber, J., J. Electronic Materials (in press) -Proceedings 13 th Internat. Conf. on Defects in Semiconductors (Coronado, Ca, 1984), edited by Kimerling, L. C. and Parsey, J. M. (The Metallurgical Society of AIME, 1985), Vol. 14a, p. 653.Google Scholar
[29] Davies, G., Lightowlers, E. C., Woolley, R., Newman, R. C., and Oates, A. S., J. Phys. C 17, L499 (1984).Google Scholar
[30] Thonke, K., Watkins, G. D., and Sauer, R., Solid State Commun. 51, 127 (1984).Google Scholar
[31] Pajot, B. (University of Paris), private communication. See also the paper by Pajot, B. and Bardeleben, J. v., Proc. 13 th ICDS,'Coronado, Ca, 1984 (Ref. [28]), p. 685.Google Scholar
[32] Hopfield, J.J., Thomas, D. G., and Lynch, R. T., Phys. Rev. Lett. 17, 312 (1966).Google Scholar
[33] Faulkner, R. A., Phys. Rev. 184, 713 (1969).Google Scholar
[34] Kohn, W. in “Solid State Physics”, edited by Seitz, F. and Turnbull, D., (Academic, New York, 1957), Vol. 5, p. 257.Google Scholar
[35] Sauer, R., J. Lum. 12/13, 495 (1970)Google Scholar