Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:44:22.392Z Has data issue: false hasContentIssue false

Excitation of Coherent Phonons in Crystalline Bi: Theory for Driving Atomic Vibrations by Femtosecond Pulses

Published online by Cambridge University Press:  01 February 2011

Davide Boschetto
Affiliation:
[email protected], ENSTA, Laboratoire d'Optique Applique, Chemin de la Hunire, Palaiseau, 91761, France
Eugene G. Gamaly
Affiliation:
[email protected], The Australian National University, Laser Physics Centre, Research School of Physical Sciences and Engineering, Canberra, ACT 0200, Australia
Andrei V. Rode
Affiliation:
[email protected], The Australian National University, Laser Physics Centre, Research School of Physical Sciences and Engineering, Canberra, ACT 0200, Australia
Thomas Garl
Affiliation:
[email protected], The Australian National University, Laser Physics Centre, RSPhysSE, Laser Physics Centre, RSPhysSE, Oliphant Building 60, The Australian National University, Canberra, 0200, Australia, +61 2 6125 4637
Antoine Rousse
Affiliation:
[email protected], ENSTA, Laboratoire d'Optique Applique, Chemin de la Hunire, Palaiseau, 91761, France
Get access

Abstract

In this paper we show time-resolved experiment with 35 fs resolution on bismuth single crystal, for which very high sensitivity detection system has been used. Coherent and incoherent lattice dynamics as well as electrons dynamics can be clearly seen into the reflectivity changes. The complex behaviour of the reflectivity could not be explained in the light of the existing theories. Therefore, we developed a new theory, starting from the very basic principle of laser-matter interaction, which is in good agreement with experimental results. Two main results will be shown: the coherent phonon is excited by the temperature gradient; the changes in reflectivity are related directly to the changes in electron-phonon collision frequency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rousse, A. et al., Nature 410, 65, (2001).Google Scholar
2. Zeiger, H. J. et al., Phys. Rev. B 45, 768 (1992).Google Scholar
3. Merlin, R., Solid State Comm. 102, 207 (1997).Google Scholar
4. Garret, G. A. et al. , Phys. Rev. Letters 77, 3661 (1996).Google Scholar
5. Hase, M. et al. , Appl. Phys. Letters 69, 2474 (1996).Google Scholar
6. Murray, E. D. et al. , Phys. Rev. B 72, 060301(R) (2005), and references herein.Google Scholar
7. Ishioka, K. et al. , Journ. of Appl. Phys. 100, 093501 (2006).Google Scholar
8. Sokolowski-Tinten, K. et al. , Nature 422, 287 (2003).Google Scholar
9. Cavalleri, A. et al. , Phys. Rev. Letters 87, 237401 (2001).Google Scholar
10. Collet, E. et al. , Science 300, 612 (2003).Google Scholar
11. Dumitrica, T. et al. Phys. Rev. Letters 92, 117401 (2004).Google Scholar
12. Chollet, M. et al. , Science 307, 86 (2005).Google Scholar
13. Kent, A.J. et al. , Phys. Rev. Letters 96, 215504 (2006).Google Scholar
14. Garl, T., Ellipsometry of Bismuth at room temperature (unpublished, 2006).Google Scholar
15. Landau, L.D., Lifshitz, E.M., Pitaevskii, L. P., Electrodynamics of Continuous Media, (Pergamon Press, Oxford, 1984).Google Scholar
16. Shen, Y.R. & Bloembergen, N., Phys. Rev. 137, 1787 (1965).Google Scholar
17. Kaganov, M. I. et al. , Sov. Phys. JETP 4, 173 (1957).Google Scholar
18. American Institute of Physics Handbook, Gray, D.E., Ed., 3d edition, (McGraw-Hill Book Company, New York, 1972).Google Scholar
19. Landolt-Bornstein, , Numerical Data and Functional relationships in Science and Technology, Group III, vol 17, Semiconductors (Springer-Verlag, Berlin, 1983).Google Scholar
20.Real and imaginary parts of the Drude dielectric function are The coefficients (derivatives) are calculated using the optical data from [15-17].Google Scholar
21. Abrikosov, A. A., Sov. Phys. JETP 17, 1372 (1963).Google Scholar
22. Ziman, M., “Electrons and Phonons”, (Clarendon Press, Oxford, 1960).Google Scholar
23.Electron-phonon coupling represents the interaction between electron charge, e, and the dipole electric field of polarized charge created by lattice vibrations, E ph eq/d 3 (d is interatomic distance). The electron-phonon momentum exchange rate expresses through the energy of interaction, ε ph qeE ph ≈ e2q2/d3 in agreement with the kinetic approach [21]: Ve-ph ≈ εph/ħ ≈ nph q 2 ve ; Ve e2 /ħ is electron velocity, nph d-3 is the phonon's density.Google Scholar
24. momentum exchange rate, ω is the laser frequency.Google Scholar
25. Roeser, C. A. D. et al. Rev. Sci. Instr. 74, 3413 (2003).Google Scholar
26. Uteza, O. P. et al. Phys Rev B 70, 054108 (2004).Google Scholar