Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:37:57.099Z Has data issue: false hasContentIssue false

Exchange Coupling and Giant Magnetoresistance in Electrodeposited Co/Cu Multilayers

Published online by Cambridge University Press:  15 February 2011

A. Dinia
Affiliation:
1-IPCMS-GEMM, UMR 46 CNRS-ULP, 23 rue du Loess 67037 Strasbourg, France
K. Rahmouni
Affiliation:
1-IPCMS-GEMM, UMR 46 CNRS-ULP, 23 rue du Loess 67037 Strasbourg, France
G. Schmerber
Affiliation:
1-IPCMS-GEMM, UMR 46 CNRS-ULP, 23 rue du Loess 67037 Strasbourg, France
H. El Fanity
Affiliation:
2-Faculté des Sciences, B.P. 1014, Rabat, Maroc
M. Bouanani
Affiliation:
2-Faculté des Sciences, B.P. 1014, Rabat, Maroc
F. Cherkaoui
Affiliation:
2-Faculté des Sciences, B.P. 1014, Rabat, Maroc
A. Berrada
Affiliation:
2-Faculté des Sciences, B.P. 1014, Rabat, Maroc
Get access

Abstract

We present the results of the transport and magnetization measurements of electrodeposited Co/Cu multilayers grown in a single electrolyte based on C0SO4, H3BO3 and CuSO4. The samples are deposited on glass substrate covered by a 500 Å thick Cu buffer layer. X-ray diffraction performed on the samples shows fee structure of both Co and Cu layers with preferential (111) orientation. Resistivity measurements show a giant magnetoresistance effect of about 4% at room temperature for multilayers with Co and Cu thickness between 4 nm ≤ tco ≤ 6 nm and 3 nm ≤ tcu ≤4 nm respectively. For Co thickness tCo ≤ 15 nm, the magnetoresistance completely vanishes indicating that there is no more continuous Co layer. The indirect antiferromagnetic exchange coupling between magnetic Co layers is relatively large for 4 nm thick Cu spacer layer and gives rise to a temperature dependence of about 30% between room temperature and 4.2 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, N.M., Broto, J.M., Fért, A., Nguyen, N., Daw, Van, Petroff, F., Etienne, P., Creuset, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett 61, 2472 (1988).Google Scholar
2. Alper, M., Aplin, P.S., Attenborough, K., Dingley, D.J., Hart, R., Lane, S.J., Lashmore, D.S., and Schwazacher, W., J. Magn. Magn. Mater. 126, 8 (1993).Google Scholar
3. Parkin, S.S.P., Brhadra, R., and Roche, K.P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
4. Greig, D., Hall, M.J., Hammond, C., Hickey, B.J., Ho, H.P., Howson, M.A., Walker, M.J., Wiser, N., and Wright, D.G., J. Magn. Magn. Mater. 110, 239 (1992).Google Scholar
5. Alper, M., Attenborough, K., Hart, R., Lane, S.J., Lashmore, D.S., Younes, C., and Schwarzacher, W., Appl. Phys. Lett. 63, 2144 (1993).Google Scholar
6. Lenczowski, S.K.J., Schonenberger, C., Gijs, M.A.M., de Jonge, W.J.M., J. Magn. Magn. Mater. 148, 455 (1995).Google Scholar
7. Dinia, A., and Ounadjela, K., J. Magn. Magn. Mater. 146, 66 (1995).Google Scholar
8. Mosca, D. H., Petroff, F., Fert, A., Schroeder, P. A., Pratt, W. P., Laloee, R., J. Magn. Magn. Mater. 94 (1991) L1.Google Scholar
9. Schreyer, A., Bröhl, K., Anker, J. F., Majkrzak, C. F., Zeidler, Th., Bödeker, P., Metoki, N. and Zabel, H., Phys. Rev. B 47, 15334 (1993).Google Scholar
10. Persat, N., Dinia, A., Jay, J. P., Meny, C. and Panissod, P., J. Magn. Magn. Mater. (1997).Google Scholar
11. Persat, N., and Dinia, A., to be publishedGoogle Scholar
12. Bruno, P., Phys. Rev. B 52, 411 (1995).Google Scholar