Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:46:54.235Z Has data issue: false hasContentIssue false

Exchange Bias and Training Effect in Polycrystalline Antiferromagnetic/Ferromagnetic Bilayers

Published online by Cambridge University Press:  10 February 2011

Markus Kirschner
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Dieter Suess
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Thomas Schrefl
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Josef Fidler
Affiliation:
Solid State Physics, Vienna University of Technology, Wiedner Haupstr. 8–10/138, A-1040 Vienna, Austria
Get access

Abstract

Exchange bias and training effect are simulated for IrMn/NiFe bilayers. As a function of the thickness of the antiferromagnet the bias field shows a maximum for a thickness of 22 nm. For decreasing antiferromagnetic thickness the domain wall energy approaches zero. For large thicknesses the high anisotropy energy hinders switching of the antiferromagnetic grains resulting in weak bias. Starting from the field cooled state as initial configuration a bias field of about 8 mT is obtained assuming a antiferromagnetic layer thickness of 20 nm, a ferromagnetic layer thickness of 10 nm, and a grain size of 10 nm. The next hysteresis cycle shows a reduction of the bias field by about 65%. Exchange bias and training effect in fully compensated antiferromagnet/ferromagnet bilayers are explained with a simple micromagnetic model. The model assumes no defects except for grain boundaries, and coupling is due to spin flop at a perfect interface. The simulations show that a weak exchange interaction between randomly oriented antiferromagnetic grains and spin flop coupling at a perfectly compensated interface are sufficient to support exchange bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meiklejohn, W. H. and Bean, C. P., Phys. Rev. 102, 1413 (1956)Google Scholar
2. Tsang, C., Fontana, R. E., R.E., ; Lin, T.; Heim, D. E., Speriosu, V. S., Gurney, B. A. and Williams, M. L., IEEE Trans. Magn. 30, 3801 (1994).Google Scholar
3. Childress, J. R., Carey, M. J., Wilson, R. J., Smith, N., Tsang, C., Ho, M. K., Carey, K., MacDonald, S. A., Ingall, L. M. and Gurney, B. A., IEEE Trans. Magn. 37, 1745 (2001).Google Scholar
4. Berkowitz, A. E., Takano, K., J. Magn. Magn. Mater. 200, 552 (1999).Google Scholar
5. Nogués, J., Schuller, I. K., J. Magn. Magn. Mater. 192, 203 (1999).Google Scholar
6. Ijiri, Y., Borchers, J. A., Erwin, R. W., Lee, S.-H., van der Zaag, P. J. and Wolf, R. M., Phys. Rev. Lett. 80, 608 (1998).Google Scholar
7. Nogués, J., Moran, T. J., Lederman, D. and Schuller, Ivan K., Phys. Rev. B 59, 6984 (1999).Google Scholar
8. King, J.P., Chapman, J.N., Gillies, M.F. and Kools, J.C.S., J. Phys. D: Appl. Phys‥ 34, 528 (2001)Google Scholar
9. van Driel, J., de Boer, F. R., Lenssen, K.-M. H. and Coehoorn, R., J. Appl. Phys. 88, 975 (2000)Google Scholar
10. Koon, N.C., Phys. Rev. Lett. 78, 4865 (1997).Google Scholar
11. Schulthess, T.C. and Butler, W.H., Phys. Rev. Lett. 81, 4516 (1998).Google Scholar
12. Stiles, M.D. and McMichael, R.D., Phys. Rev. B 59, 3722 (1999).Google Scholar
13. Nowak, U., Misra, A. and Usadel, K.D., J. Appl. Phys. 89, 7269 (2001)Google Scholar
14. Suess, D., Schrefl, T., Scholz, W., Kim, J.-V., Stamps, R. L., Fidler, J., IEEE Trans. Magn. 38, 2397 (2002).Google Scholar
15. Stamps, R. L., J. Phys. D:Appl. Phys. 33, 247 (2000).Google Scholar
16. Hinzke, D. and Nowak, U., Phys. Rev. B 58, 265 (1998).Google Scholar