Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:25:11.842Z Has data issue: false hasContentIssue false

Examination of Particles and Outgrowths on the Surface of Epitaxial Yba2Cu3O7 Thin Films

Published online by Cambridge University Press:  15 February 2011

M. Grant Norton
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman WA 99164
Rand R. Biggers
Affiliation:
US Air Force Wright Laboratory, WL/MLPO, Wright Patterson AFB, OH 45433
I. Maartense
Affiliation:
US Air Force Wright Laboratory, WL/MLPO, Wright Patterson AFB, OH 45433
E. K. Moser
Affiliation:
US Air Force Wright Laboratory, WL/MLPO, Wright Patterson AFB, OH 45433
Jeff L. Brown
Affiliation:
U S Air Force Wright Laboratory, WL/ELOT, Wright Patterson AFB, OH 45433
Get access

Abstract

The surface morphology of Yba2Cu3O7 thin films formed on (001)-oriented LaAlO3 substrates by pulsed-laser deposition has been examined using electron and scanning probe microscopies. The observed surface features can be divided into two types: particles formed as a result of material (often molten) ejected from the target and outgrowths formed as a result of nucleation and growth processes on the substrate and/or the film surface. Where both types of surface feature occur on a particular film the outgrowths are always more numerous. The density of outgrowths is strongly related to the deposition parameters and, as a consequence, with the film growth mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheung, J.T. and Sankur, H., CRC Critical Reviews in Solid-State and Materials Sciences, 15, 63 (1988).Google Scholar
2. Singh, R.K., Bhattacharya, D., Narayan, J., Appl. Phys. Lett. 61, 483 (1992).Google Scholar
3. Norton, M.G., Tietz, L.A., Summerfelt, S.R., and Carter, C.B., Appl. Phys. Lett. 55, 2348 (1989).Google Scholar
4. Chang, C.C., Wu, X.D., Ramesh, R., Xi, X.X., Ravi, T.S., Venkatesan, T., Hwang, D.M., Muenchausen, R.E., Foltyn, S., and Nogar, N.S., Appl. Phys. Lett. 57, 1814 (1990).Google Scholar
5. Chang, C.C., Wu, X., D., Inam, A., Hwang, D.M., Venkatesan, T., Barboux, P., and Tarascon, J.M., Appl. Phys. Lett. 53, 517 (1988).Google Scholar
6. Han, Z., Selinder, T.I., and Helmersson, U., J. Appl. Phys. 75, 2020 (1994).Google Scholar
7. Catana, A., Bednorz, J.G., Gerber, Ch., Mannhart, J., and Schlom, D.G., Appl. Phys. Lett. 63, 553 (1993).Google Scholar
8. Selinder, T.I., Han, Z., Helmersson, U., Sundgren, J.-E., Sjöström, H., and Wallenberg, L.R., Physica C 202, 69 (1992).Google Scholar
9. Locquet, J.-P., Jaccard, Y., Gerber, C., and Mächler, E., Appl. Phys. Lett. 63, 1426 (1993).Google Scholar
10. Raistrick, I.D. and Hawley, M., in: Interfaces in High-Tc Superconducting Systems, edited by Shindé, S.L. and Rudman, D.A., Springer-Verlag New York (1993) pp. 2870.Google Scholar
11. Basu, S.N., Carim, A.H., and Mitchell, T.E., J. Mater. Res. 6, 1823 (1991).Google Scholar
12. Streiffer, S.K., Lairson, B.M., Zielinski, E.M., Umezawa, T., Geballe, T.H., and Bravman, J.C., Proc. 50th. Annual Meeting of EMSA, edited by Bailey, G.W., Bentley, J., and Small, J.A., San Francisco Press, San Francisco (1992) p. 240.Google Scholar
13. Catana, A., Schlom, D.G., Mannhart, J., and Bednorz, J.G., Appl. Phys. Lett. 61, 720 (1992).Google Scholar