Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:05:58.277Z Has data issue: false hasContentIssue false

Exafs Studies of Ion Implanted Bismuth1

Published online by Cambridge University Press:  25 February 2011

E. M. Kunoff
Affiliation:
Massachusetts Institute of Technology, Department of Physics, Cambridge, MA 02139.
M. S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Department of Physics, Cambridge, MA 02139.
Y. H. Kao
Affiliation:
State University of New York at Stony Brook, Department of Physics, Stony Brook, NY 11794.
Get access

Abstract

Magnetorefiection and preliminary Rutherford Backscattering channeling experiments indicate that point defects induced in the bismuth lattice by ion implantation are largely annealed out during the implantation process due to its low melting temperature of 271.3°C. These experiments also show that the implanted ions cause long range strains in the crystal. Single crystal bismuth samples have been implanted at low temperatures (from 273°K down to 77°K) with 75 As to a total fluence of 5 × 1016/cm2 at energies ranging from 50 keV to 200 keV to yield an approximately constant arsenic profile from the sample surface to a depth of 625 Å. To study the local environment of the implanted As ions, EXAFS measurements have been made at the Cornell High Energy Synchrotron Source (CHESS). From these data, we obtain a comparison of the As nearest neighbor distances in samples implanted at different temperatures. We discuss the effect of sample temperature during implantation on these properties. This work represents the first use of EXAFS to characterize annealing of implantation-induced lattice defects during the process of ion implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Supported by NSF Grant DMR 83-10482.

References

[1] Cohen, M. H., Falicov, L. M., Golin, S., IBM J. Res & Dev. 8, 215 (1964).10.1147/rd.83.0215CrossRefGoogle Scholar
[2] Abrikosov, A. A., Soy. Phys. JETP 38, 1031 (1974).Google Scholar
[3] Abrikosov, A. A. and Falcovskii, L. A., Soy. Phys. JETP 16, 76 (1974).Google Scholar
[4] McClure, J., J. Low Temp. Phys. 25, 527 (1976).10.1007/BF00657282Google Scholar
[5] Choi, K. H., Ph. D. Thesis, University of Oregon, unpublished (1978).Google Scholar
[6] Vecchi, M. P., Pereira, J. R. and Dresselhaus, M. S., Phys. Rev. B14, 298 (1976).10.1103/PhysRevB.14.298Google Scholar
[7] Brandt, N. B., Soy. Phys. JETP 11, 975 (1960); 10, 405 (1960).Google Scholar
[8] Smith, G. E., Baraff, G. A., and Rowell, J. M., Phys. Rev. 135, A1118 (1964).10.1103/PhysRev.135.A1118CrossRefGoogle Scholar
[9] Mendez, E. E., Misu, A. and Dresselhaus, M. S., Phys. Rev. B24, 639 (1981).10.1103/PhysRevB.24.639Google Scholar
[10] Misu, A., Chieu, T. C., Dresselhaus, M. S. and Heremans, J., Phys. Rev. B25, 6155 (1982).10.1103/PhysRevB.25.6155Google Scholar
[11] Brandt, N. B. and Chudinov, S. M., Soy. Phys. JETP 32, 815 (1960);Google Scholar
[12] Brandt, N. B., Kul'bachinskii, V. A., Minina, N. Ya. and Shirokikh, V. D., Soy. Phys. JETP 51, 562 (1980).Google Scholar
[13] Nicolini, C., Chieu, T. C., Dresselhaus, G. and Dresselhaus, M. S., Solid State Commun. 43, 233 (1982).10.1016/0038-1098(82)90082-5Google Scholar
[14] Kunoff, E. M., Elman, B. S. and Dresselhaus, M. S., MRS Symp. Proc. Vol.27: Ion Implantation and Ion Beam Processing of Materials, North Holland, New York, 1983.Google Scholar
[15] Cohen, M. H., Phys. Rev. 121, 387 (1961).10.1103/PhysRev.121.387Google Scholar
[16] Baraff, G. A., Phys. Rev. 137, A842 (1965).10.1103/PhysRev.137.A842Google Scholar
[17] Kunoff, E. M., Elman, B. S., Dresselhaus, M. S. and Dresselhaus, C. (unpublished).Google Scholar
[18] Vecchi, M. P., Ph. D. Thesis, MIT (unpublished).Google Scholar
[19] Keyes, W., Sol. State Phys. 20, 3790 (1967).10.1016/S0081-1947(08)60217-9Google Scholar
[20] Lindhard, J., Scharff, M. and Schiott, H. E., Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 33, 14 (1963).Google Scholar
[21] Walther, K., Phys. Rev. 174, 782 (1968).10.1103/PhysRev.174.782Google Scholar
[22] Lee, P. A., Citrin, P. H., Eisenberger, P. and Kincaid, B. M., Rev. Mod. Phys. 53, 769 (1981).10.1103/RevModPhys.53.769Google Scholar
[23] Marcus, M., EXAFS Spectroscopy: Techniques and Applications, Plenum Press, New York (1981).Google Scholar
[24] Goldman, A. I., Canova, E., Kao, Y. H., Fitzpatrick, B. J., Bhargava, R. N. and Phillips, J. C., Appl. Phys. Let. 43,836 (1983).10.1063/1.94513Google Scholar
[25] Sample was implanted by Skvarla, M. at the National Submicron Structures Laboratory at Cornell University.Google Scholar
[26] Spectra were taken by Dr. Braunstein, G. of , M.I.T. and Galven, Dr. G. of Cornell University, respectively.Google Scholar
[27] Stearn, E. A. and Heald, S. M., Rev. Sci. Inst. 50, 1579 (1979).10.1063/1.1135763Google Scholar
[28] Teo, B. K. and Lee, P. A., J. Am. Chem. Soc. 101,2813 (1979).Google Scholar
[29] Feldman, L. C., Mayer, J. W., Picraux, S. T., Materials Analysis by Ion Channeling, Academic Press, New York, 1982.Google Scholar