Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:16:04.016Z Has data issue: false hasContentIssue false

EXAFS Analysis of Dilute Magnetic Semiconductor Thin Films Synthesized by the Ion Beam Technique

Published online by Cambridge University Press:  15 February 2011

Kin Man Yu
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
J. W. Ager III
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
E. Bourret
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
N. Derhacobian
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
R. Giauque
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
J. M. Jaklevic
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
P. Becla
Affiliation:
National Magnet Laboratory, MIT, Cambridge, MA.
C. Rossington
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
W. Walukiewicz
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
M. Wesela
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
X. Yao
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

We have synthesized dilute magnetic semiconductor (DMS) thin films of CdMnTe and ZnMnSe using the ion beam technique. High doses of Mn ions (∼2–5×1016/cm 2) were implanted into single crystal CdTe and into ZnSe epilayers on GaAs, forming subsurface layers of Cdl.xMnxTe and Znl-xMnxSe alloys, respectively, with x∼0.15–0.22. Fluorescence extended x-ray absorption fine structure (EXAFS) measurements on these materials reveal that the Mn atoms in the CdMnTe and ZnMnSe layers, both as-implanted and annealed, have local environments similar to their corresponding bulk-grown DMS alloys. While the anion-cation distances (Ra-c) in the annealed samples are equivalent to those in the corresponding bulk-grown DMS, the Ra-c in the asimplanted samples are slightly larger (∼0.01Å) than those in the bulk-grown DMS. This is most likely due to the implantation damage in the as-implanted materials. Our results on the Ra-c of the ion beam synthesized layers deviate significantly from Vegard's law, but are consistent with the bimodal distribution model. The EXAFS results are corroborated with results from ion beam analysis and Raman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. zumi, Katsutishi, Vacuum 42, 333 (1991) and references therein.Google Scholar
2. Stephens, K. G., Reeson, K. J., Sealy, B. J. Gwilliam, R. M., Hemment, P. L. F., Nucl. Instrum. Meth. B50, 368 (1990).Google Scholar
3. White, A. E., Short, K. T., Dynes, R. C., Hull, R., and Vandenberg, S. M., Nucl. Instrum. Meth. B39, 253 (1989).Google Scholar
4. White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., App. Phys. Lett. 50, 95 (1987).Google Scholar
5. Tan, Z., Namavar, F., Heald, S. M., Budnick, J. I., and Sanchez, F. H., Mat. Res. Soc. Symp. Proc. Vol.235, 267 (1992).Google Scholar
6. Desimoni, J., Bernas, H., Behar, M., Lin, X. W., Washburn, J., and Liliental-Weber, Z., Appl. Phys. Lett. 62, 306 (1993).Google Scholar
7. Yu, K. M., Katz, B., Wu, I. C., and Brown, I. G., Nucl. Instrum. Meth. B58, 27 (1991).Google Scholar
8. Lindner, J. K. N. and teKaat, E. H., J. Mater. Res. 3, 1238 (1988).Google Scholar
9. Paine, D. C., Howard, D. J., Stoffel, N. G., and Horton, J. A., J. Mater. Res. 5, 1023 (1990).Google Scholar
10. Kin Man Yu, Ian Brown, G., and Seongil Im. Mat. Res. Soc. Symp. Proc. Vol.235, 293 (1992).Google Scholar
11. Seongil Im, Washburn, J., Gronsky, R., Cheung, N. W., and Kin Man Yu, Appl. Phys. Lett., in press.Google Scholar
12. Giriat, W. and Furdyna, J. K., in Semiconductors and Semimetals vol.25: Dilute Magnetic Semiconductors, edited by Furdyna, Jacek K. and Kossut, Jacek (Academic Press, New York, 1987), Chapter 1 and references therein.Google Scholar
13. Brown, I. G., Galvin, J. E., Gavin, B. F., and MacGill, R. A., Rev. Sci. Instrum. 57, 1069 (1986).Google Scholar
14. Sayers, D. E. and Bunker, B. A., in X-Ray Absorption: Principles. Applications. Techniques of EXAFS. SEXAFS and XANES, edited by Koningsberger, D. C. and Prins, R. (Wiley, New York, 1988), Chapter 6.Google Scholar
15. Gettings, M. and Stephens, K. G., Radiation Effects 22, 53 (1974).Google Scholar
16. Bowman, R. C. Jr., Alt, R. L., Adams, P. M., Knudsen, J. F., Jamieson, D. N., and Downing, R. G., J. Cryst. Growth 86, 768 (1988).Google Scholar
17. Williams, J. S. and Poate, J. M., ed., Ion Implantation and Beam Processing (Academic Press, New York, 1984).Google Scholar
18. Balzarotti, A., Motta, N., Kisiel, A., Zimnal-Starnawska, M., Czyzyk, M. T., and Podgorny, M., Phys. Rev. B31, 7526 (1985).Google Scholar
19. Mikkelsen, J. C. and Boyce, J. C., Phys. Rev. B28, 7130 (1983).Google Scholar
20. Oyanagi, Hiroyuki, Takeda, Yoshikazu, Matsushita, Tadashi, Ishoguro, Takehiko, and Sasaki, Akio, J. Phys. Colloq. 47, C8423 (1986).Google Scholar
21. Pong, W.F., Mayanovic, R. A., Bunker, B. A., Furdyna, J. K., and Debska, U., Phys. Rev. B41, 8440 (1990).Google Scholar