Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T04:17:51.869Z Has data issue: false hasContentIssue false

Evolving Thin Polymer Film Driven by Electrostatic Field

Published online by Cambridge University Press:  01 February 2011

Dongchoul Kim
Affiliation:
[email protected], University of Michigan, Mechanical Engineering, 2182 G.G.Brown 2350 Hayward, Ann Arbor, MI, 48109-2125, United States, 734-936-3189
Wei Lu
Affiliation:
[email protected], University of Michigan, Assistant Professor, United States
Get access

Abstract

Experiments have shown that a thin polymer film subjected to an electrostatic field may lose stability at the polymer-air interface, leading to uniform self-organized pillars emerging out of the film surface. This paper presents a three dimensional dynamic model that accounts for the behavior. Attention is focused on the interplay of the thermodynamic forces and the kinetic processes. The coupled diffusion, viscous flow, and dielectric effect are incorporated into a phase field framework. The semi-implicit Fourier spectral method and the preconditioned biconjugate-gradient method are applied in the simulations for high efficiency and numerical stability. Numerical simulations reveal rich dynamics of the pattern formation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

1. Schäffer, E., Thurn-Albrecht, T., and Russell, T. P., Nature 403, 874 (2000).Google Scholar
2. Morariu, M. D., Voicu, N. E., Schäffer, E., et al. , Nature Mater. 2, 48 (2003).Google Scholar
3. Salac, D., Lu, W., Wang, C.-W., et al. , Appl. Phys. Lett. 85, 1161 (2004).Google Scholar
4. Chou, S. Y. and Zhuang, L., J. Vac. Sci. Technol. B 17, 3197 (1999).Google Scholar
5. Chou, S. Y., Zhuang, L., and Guo, L. J., Appl. Phys. Lett. 75, 1004 (1999).Google Scholar
6. Schäffer, E., Thurn-Albrecht, T., Russell, T. P., et al. , Europhys. Lett. 53, 518 (2001).Google Scholar
7. Wu, L. and Chou, S. Y., Appl. Phys. Lett. 82, 3200 (2003).Google Scholar
8. Lin, Z., Kerle, T., Baker, S. M., et al. , J. Chem. Phys. 114, 2377 (2001).Google Scholar
9. Toney, M. F., Russell, T. P., Logan, J. A., et al. , Nature 374, 709 (1995).Google Scholar
10. Zheng, X., Rafailovich, M. H., and Sokolov, J., Phys. Rev. Lett. 79, 241 (1997).Google Scholar
11. Frank, B., Gast, A. P., Russell, T. P., et al. , Macromolecules 29, 6531 (1996).Google Scholar
12. Cahn, J. W. and Hilliard, J. E., J. Chem. Phys. 31, 688 (1959).Google Scholar
13. Lu, W. and Suo, Z., Mech, J.. Phys. Solids 49, 1937 (2001).Google Scholar
14. Roths, T., Friedrich, C., Marth, M., et al. , Rheol. Acta 41, 211 (2002).Google Scholar
15. Keestra, B. J., Puyvelde, P. C. J. V., Anderson, P. D., et al. , Phys. Fluids 15, 2567 (2003).Google Scholar
16. Lorrain, P., Corson, D. R., and Lorrain, F., Elecromagnetic fields and waves: including electric circuits (W.H. Free man and company, 1988).Google Scholar
17. Gurtin, M. E., Polignone, D., and Viñals, J., Math. Mod. Meth. App Sci. 6, 815 (1996).Google Scholar
18. Zhu, J., Chen, L.-Q., and Shen, J., Phys. Rev. E 60, 3564 (1999).Google Scholar