Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:28:12.975Z Has data issue: false hasContentIssue false

Evolution of the spent nuclear fuel during the confinement phase in repository conditions: Major outcomes of the French research

Published online by Cambridge University Press:  21 March 2011

C. Ferry
Affiliation:
Nuclear Energy Division, Department of physics and chemistry, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
J.P Piron
Affiliation:
Nuclear Energy Division, Department of fuel studies, CEA-Cadarache, 13108 Saint-Paul lez Durance, France
Ch. Poinssot
Affiliation:
Nuclear Energy Division, Department of physics and chemistry, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
Get access

Abstract

The effects of the temperature and high radioactivity on the chemical and physical state of the fuel during a confinement phase were evaluated in the framework of the PRECCI program. No significant evolution of the fuel chemistry is expected. The radionuclides mobility due to thermal diffusion can be neglected in the temperature range of disposal and diffusion enhanced by α self-irradiation appears to be limited. Microscopic swelling due to alpha self irradiation cumulated damage corresponds to a low volume increase of about 1%. Macroscopic swelling will depend on the helium behavior in the spent fuel. Literature data and results from the project indicate that helium solubility is low in UO2 and should be reached after a few centuries of cooling for MOX fuels. Although the thermal diffusion of helium is some orders of magnitude faster than the thermal diffusion of xenon, it remains low in the temperature range of disposal. Therefore, the first step of physical damage due to helium production should be the precipitation of He bubbles in grains, causing micro-cracks, which could enhance the He release to the grain boundaries. These processes and their consequences on the stability of grain boundaries still need to be quantified today.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Poinssot, C., Toulhoat, P., Gras, J.M., Vitorge, P., Proc. Actinides 2001, J. Nucl. Sci. and Tech., 3 473476 (2002)Google Scholar
[2] Werme, L., Johnson, L.H., Oversby, V.M., King, F., Spahiu, K., Grambow, B., Shoesmith, D.W., SKB technical report, TR-04-19 (2004).Google Scholar
[3] Johnson, L.H., Poinssot, C., Ferry, C., Lovera, P., NAGRA Technical Report 04-08 (2004).Google Scholar
[4] Piron, J.P., Pelletier, M., Dumas, J.C., Poinssot, C., Gras, J.M., In proceedings of ICEM'01 Conf.(2001)Google Scholar
[5] Matzke, Hj., J. Nucl. Mat. 114, 121135 (1983).Google Scholar
[6] Matzke, Hj., J. Nucl. Mat. 223, 15 (1995).Google Scholar
[7] Matzke, Hj., J. Nucl. Mat. 208, 1826 (1994).Google Scholar
[8] Garcia, P., Piron, J.P., Baron, D., IAEA Technical Committee Meeting on Water Reactor Fuel Element Modelling at High Burnup and Experimental Support, IAEA-TECDOC- 957, 523538 (1997)Google Scholar
[9] Martin, P., Ripert, M., Carlot, G., Parent, P., Laffon, C., J. Nucl. Mat. 326, 132143 (2004).Google Scholar
[10] Matzke, Hj., Rad. Effects, 1983, 75, 317325 (1983)Google Scholar
[11] G., S., , Prussin, Olander, D.R., Lau, W.K., Hansson, L., J. Nucl. Mat., 154, 2537 (1988).Google Scholar
[12] Ewing, R.C., Weber, W.J., J., W., Clinard, F.W. Jr., Progress in Nuclear Energy, 29, 21, 63127 (1995).Google Scholar
[13] Matzke, Hj., Wiss, T., T., , ITU annual report, EUR 19812, 30–43 (2000).Google Scholar
[14] Matzke, Hj., Radiation Effects, 64, 333 (1982).Google Scholar
[15] Ferry, C.,.Lovera, P., Poinssot, C., Garcia, P., J. Nucl. Mat. 346, 4855 (2005)Google Scholar
[16] Olander, D., SKB Technical Report TR 04-17, SKB, Stockholm (2004).Google Scholar
[17] Matzke, Hj., j., H., Whitton, J.L., Can. J. Phys., 44, 9951010 (1966).Google Scholar
[18] Naguib, H.M., Kelly, R., R., , Radiation Effects, 25, 112 (1975).Google Scholar
[19] Rarivomanantsoa, M., Brutzel, L. Van, Ghaleb, D., D., , J. Nucl. Mat. (submitted for publication)Google Scholar
[20] Poinssot, C., Toulhoat, P., Grouiller, J.P., Pavageau, J., Piron, J.P., Pelletier, M., Dehaudt, P., Cappelarere, C., Limon, R., Desgranges, L., Jegou, C., Corbel, C., Maillard, S., Fauré, M.H., Cicariello, J.C., Masson, M., CEA Report, CEA – R- 5958(E), CEA-Saclay (2001).Google Scholar
[21] Weber, W.J., J. Nucl. Mat. 98, 206215 (1981)Google Scholar
[22] Ferry, C., Poinsot, C., Broudic, V., Cappelaere, C., Desgranges, L., Garcia, P., Jegou, C., Lovera, P., Marimbeau, P., Piron, J.P., Poulesquen, A., Roudil, D., Gras, J.M., Bouffioux, P., CEA Report, CEA-R-6084 (2005), CEA-SaclayGoogle Scholar
[23] Rufeh, F., Olander, D.R., Pigford, T.H., Nucl. Science and Engineering, 23, 335338 (1965)Google Scholar
[24] Guilbert, S., Sauvage, T., Erralmi, H., Barthe, M.F., Desgardin, P., Blondiaux, G., Corbel, C., Piron, J.P., J. Nucl. Mat. 321, 121128 (2003).Google Scholar
[25] Guilbert, S., Sauvage, T., Garcia, P., Carlot, G., Barthe, M.F., Desgardin, P., Blondiaux, G., Corbel, C., Piron, J.P., Gras, J.M., J. Nucl. Mat. 327, 8896 (2004).Google Scholar
[26] Roudil, D., Deschanels, X., Trocellier, P., Jegou, C., Peuget, S., Bart, J.M., M., J., J. Nucl. Mat. 325, 148158 (2004).Google Scholar
[27] Ronchi, C., Hiernaut, J.P., J. Nucl. Mat. 325, 112 (2004)Google Scholar
[28] Davies, D., Long, G., G., , UKAEA Report AERE R 4347 (1963).Google Scholar
[29] Roudil, D., Jégou, C., Deschanels, X., Peuget, S., Raepsaet, C., Gallien, J.P., Broudic, V., Mat. Res. Proc., Ghent, Belgium (2005)Google Scholar
[30] Poinssot, C., Ferry, C., Lovera, P., Jégou, C., Gras, J.M., J. Nucl. Mat. 346, 6677 (2005)Google Scholar