Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:25:47.237Z Has data issue: false hasContentIssue false

Evolution of the Shape and Size of Ingaas Selforganized Quantum Dots

Published online by Cambridge University Press:  10 February 2011

Qianghua Xie
Affiliation:
Semiconductor Research Center, Wright State University, Dayton, OH, 45435
J. L. Brown
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, 45433
R. L. Jones
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, 45433
J. E. Van Nostrand
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, 45433
Get access

Abstract

We have found a shape transformation of InGaAs quantum dots formed via a fractional monolayer deposition technique on GaAs (001) surfaces. This is evidenced by the bimodal quantum dot height (peaked at 8.5 nm and 14.5 nm) and aspect ratio (peaked at 0.18 and 0.26) distributions. The lateral size, height, and aspect ratio all become convergent, suggesting a simultaneous quantum dot size equalization and shape stabilization. Photoluminescence peaks red shift as a consequence of dot growth, and their line-widths become smaller due to dot shape stabilization and size equalization. A record low inhomogeneous broadening of 18.4 meV at a wavelength of 1180 nm (4 K) is obtained for vertically-aligned, shape-stabilized, and size-equalized InGaAs dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Lett., 57, 2110(1990).Google Scholar
2.Bimberg, D., Kirstaedter, N., Ledentsov, N.N., Alferov, Zh. I., Kop'ev, P.S. and Ustinov, V.M., IEEE J. of Selected Topics in Quantum Electronics, Vol. 3, 196(1997).Google Scholar
3.Xie, Q., Kalburge, A., Chen, P., and Madhukar, A., IEEE Photonics Technol. Lett., 8, 965(1996).Google Scholar
4.Leonard, D., Pond, K., and Petroff, P.M., Phys. Rev. B 50, 11687(1994).Google Scholar
5.Xie, Q., Chen, P., Kalburge, A., Ramachandran, T.R., Nayfonov, A., Konkar, A., and Madhukar, A., J. Crystal Growth, 150, 357(1995).Google Scholar
6.Vahala, K., IEEE J. Quantum Electron, 24, 523(1988).Google Scholar
7.Xie, Q., Madhukar, A., Chen, P. and Kobayashi, N.P., Phys. Rev. Lett., 75, 2542(1995).Google Scholar
8.Solomon, G.S., Trezza, J.A., Marshall, A.F., and Harris, J.S., Phys. Rev. Lett., 76, 952(1996).Google Scholar
9.Mukhametzhanov, I., Heitz, R., Zeng, J., Chen, P., and Madhukar, A., Appl. Phys. Lett., 73, 1841(1998).Google Scholar
10.Van Nostrand, J. E., Chey, S. Jay, Cahill, D. G., Botchkarev, A.E. and Morkoq, H., Surf. Science, 346, 136(1996).Google Scholar
11.Ross, F. M., Tersoff, J. and Tromp, R.M., Phys. Rev. Lett. 80, 984(1998).Google Scholar
12.Saito, H., Nishi, K. and Sugou, S., Appl. Phys. Lett., 74, 1224(1999).Google Scholar
13.Xie, Qianghua, Ph. D dissertation, University of Southern California, (1996).Google Scholar
14.Heitz, R., Mukhametzhanov, I., Chen, P., and Madhukar, A., Phys. Rev. B58, RI0151 (1998).Google Scholar
15. K Mukai, Ohtsuka, N., Sugawara, M. and Yamazaki, S., Jph. J. Appl. Phys., 33, L1710 (1994).Google Scholar