No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
The interface growth dynamics of Si leading to laser-induced amorphization have been studied as a function of incident energy density and crystallographic orientation using tran-smission electron microscopy (TEM). Using lithographic and dry etching techniques, cross sectional TEM specimens across the entire melt region were produced. These samples allowed observation of the evolution of the amorphous thickness and crystal defect structure from shallow anmorphous Si (a-Si) formation near the melt threshold energy density to crystallized material (c-Si) at higher energy densities. For surfaces near [111] orientations, marked differences in the solidification behavior were observed as compared to [001] or [110] orientations. The transition to a-Si growth at the moving liquid/crystal interface is discussed in terms of interface response function kinetics and crystallization models. A growth instability model, arising from the shape of the interface response function, is proposed to explain the observed nmicrostructure.