Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T19:16:08.006Z Has data issue: false hasContentIssue false

Evolution of the GaAs(001) Surface Physico-Chemical Characteristics and Electrical Properties of the Si3N4/GaAs Interface with the NH3Photolysis Treatment of the GaAs Surface.

Published online by Cambridge University Press:  26 February 2011

J.L. Guizot
Affiliation:
Laboratoire Central de Recherche (LCR) Thomson-CSF, Orsay 91940, France.
P. Alnot
Affiliation:
Laboratoire Central de Recherche (LCR) Thomson-CSF, Orsay 91940, France.
J. Perrin
Affiliation:
Laboraroire de Physique des Interfaces et Couches Minces (LP1CM) Ecole Polytechnique, Palaiseau France.
B. Allain
Affiliation:
Laboraroire de Physique des Interfaces et Couches Minces (LP1CM) Ecole Polytechnique, Palaiseau France.
Get access

Abstract

Cleaning treatments of GaAs(001) by UV decomposition of NH3 has been studied by means of X-ray photoemission spectroscopy (XPS) and X-ray photoelectron diffraction (XPD). This photolysis treatment is shown to decompose the surperficial oxides and to remove the carbon of contamination. The surface cleaning is followed by the formation of gallium nitride overlayers. When used prior to UVCVD silicon nitride deposition, this treatment is shown to improve the electrical characteristics of the Si3N4/GaAs MIS structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Padmanabhan, R., Miller, B.J. and Tam, G., Mater. Res. Soc. Symp. Proc. 101 (1988) 379.Google Scholar
2) Shimoda, S., Shimizu, I. and Migitaka, M., Appl. Phys. Lett. 52 (1988) 1068.Google Scholar
3) Takahashi, S., Nakada, T., Kamimura, K., Zama, H., Hattori, T. and Kunioka, A, Jpn. J.of Appl. Phys. 26 (1987) L1606.Google Scholar
4) Chang, P.P.H. and Darack, S., Appl. Phys. Lett. 38 (1981) 898.Google Scholar
5) Gourrier, S., Friedel, P. and Larsen, P.K. Surface Science 152 (1985) 153.Google Scholar
6) Alnot, P., Olivier, J., Wyczisk, F. and Fadley, C.S., J. of Electron Spectroscopy 43 (1987) 263.CrossRefGoogle Scholar
7) Arthur, J.R., J. Appl. Phys. 38 (1967) 4023.Google Scholar
8) Capasso, F. and Williams, G.F., J. Electrochem. Soc. 129 (1982) 821.Google Scholar
9) Olivier, J., Alnot, P. and F. Wyczisk to be published Semiconductor Science and technology (1989).Google Scholar
10) Wu, C.Y. and Lin, M.S. J. Appl Phys 60 (1986).Google Scholar
11) Bayraktaroghu, B. and Johnson, R.J., J. Appl. Phys. 52 (1981).Google Scholar