Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T19:17:48.005Z Has data issue: false hasContentIssue false

Evolution of γ′ Precipitate in in-713C for Long Aging Treatments

Published online by Cambridge University Press:  10 February 2011

A. Ges
Affiliation:
IFIMAT-CIC, U-NICEN, Pinto 399 (7000) Tandil, [email protected]
O. Fornaro
Affiliation:
IFIMAT-CIC, U-NICEN, Pinto 399 (7000) Tandil, [email protected]
H. Palacio
Affiliation:
IFIMAT-CIC, U-NICEN, Pinto 399 (7000) Tandil, [email protected]
Get access

Abstract

The strength of nickel-base superalloys hardened through precipitation is related to the volume fraction, particle size and distribution of the precipitate phase γ′: Ni3(Al,Ti). Such particles grow during the initial heat treatment and for long aging times, and it is very important to predict the kinetics growth owing to its technological application at high temperatures. In this work, we performed the analysis of the particle coarsening in IN-713C during long aging times at constant temperature (T=1223K), given an initial size, the volume fraction distribution of the γ′ precipitate phase, the evaluation of two different heat treatments through the microstructure analysis and γ′ morphology and tensile properties between 873–1123K. We found that for short aging times, t < 9×106s, the coarsening can be approximated by a linear volumetric growth as predicted by LSW theory. For a time greater than 9×106s the growth rate of γ′ precipitate shows an asymptotic behavior in both heat treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. MacKay, R. A. and Nathal, M. V.: Acta Metall. Matter. 38 (1990) 993.Google Scholar
2. McLean, D.: Metals Sci. 18 (1984) 249.Google Scholar
3. Ges, A., Palacio, H. and Versaci, R.: J. Mater. Sci. 29 (1994) 3572.Google Scholar
4. Greenwood, G. W.: Acta Metall. 4 (1956) 243.Google Scholar
5. Lifshitz, I. and Slyozov, V.: J. Phys. Chem. Solids 19 (1961) 35.Google Scholar
6. Wagner, C.: Z. Elect. 65 (1961) 581.Google Scholar
7. Ardell, A. J.: Acta Metall. 20 (1972) 61.Google Scholar
8. Harris, K., Erikson, G. L. and Schwer, R. E.: Metals Handbook,, 10th Ed., Vol 1: Properties and Selection, ASM International (1989) 995.Google Scholar
9. Doi, M., Miyazaqui, T. and Wakatsuki, T.: Matter. Sci. Eng. 67 (1984) 247.Google Scholar
10. Miyazaqui, T., Seki, K., Doi, M. and Kozakai, T.: Matter. Sci. Eng. 77 (1986) 125.Google Scholar
11. Johnson, W. C., Voorhees, P. W. and Zupon, D. E.: Met. Trans. 20A (1989) 1175.Google Scholar
12. Voorhees, P. W., MacFadden, G. B. and Johnson, W. C.: Acta Metall. Matter. 40 (1992) 2979.Google Scholar
13. Ges, A. M., Fornaro, O. and Palacio, H., J. Mater. Sci. 32 (1997) 3687.Google Scholar
14. Chellman, D. J. and Ardell, A. J..: Acta Metall. 22 (1974) 577.Google Scholar
15. Trinckauf, K., Pesicka, J., Schlesier, C. and Nembach, E.: Phys. Stat. Sol. 131A (1992) 345.Google Scholar
16. Voorhees, P. W.,. J Stat. Phys. 38 (1985) 231.Google Scholar
17. Ardell, A. J. and Nicholson, R. B., J. Phys. Chem. Solids, 27 (1966) 1793.Google Scholar
18. Kirkwood, D. H., Acta Metall. 18 (1970) 563.Google Scholar
19. Hirata, T. and Kirkwood, D. H., Acta Metall. 25 (1977) 1425.Google Scholar
20. Mahesshwari, A. and Ardell, A. J., Acta Metall. Matter. 40 N°10 (1992) 2661.Google Scholar
21. Davies, C. K. L., Nash, P. and Stevens, R. N., Acta Metall. 28, (1980) 179.Google Scholar
22. Brailsford, A. D. and Wynblatt, P., Acta Metall. 27, (1979) 489.Google Scholar
23. Voorhees, P. W. and Glicksman, M. E., Acta Metall. 32 (1984) 2013.Google Scholar
24. Stoloff, N. S. in The Superalloys. edited by Sims, C. T. and Hagel, W. C., John Wiley & Sons, New York (1972) 79111.Google Scholar