Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:47:49.015Z Has data issue: false hasContentIssue false

Evolution of Nanocrystalline Silicon Layers Deposited at 150°C for Thin Film Transistor Channels

Published online by Cambridge University Press:  15 February 2011

I-Chun Cheng
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Steven Allen
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Get access

Abstract

Thin film transistors of nanocrystalline silicon (nc-Si:H) are made in the staggered topgate, bottom-source/drain geometry. To achieve both high carrier mobility and low off current, the nc-Si:H channel material must be kept thin but comprise a contiguous 10-nm thick crystalline layer at its top. We study this electrically most interesting top layer of the nc-Si:H channel film by AFM and SEM. Introducing an nc-Si:H seed layer underneath the TFT promotes the structural evolution of the nc-Si:H channel layer and raises the electron field effect mobility up to 40 cm2V-1s-1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hsu, P. I., Huang, M., Wagner, S., Suo, Z. and Sturm, J. C., Mater. Res. Soc. Symp. Proc. 621, Q8.6 (1999).Google Scholar
2. Gleskova, H., Wagner, S., and Suo, Z., Mater. Res. Soc. Symp. Proc. 508, 73 (1998).Google Scholar
3. Gleskova, H. and Wagner, S., IEEE Electron Dev. Lett., 20, No. 9, 473 (1999).Google Scholar
4. Sazonov, A. and Nathan, A., J. Vac. Sci. Technol. A 18 (2), 780 (2000).Google Scholar
5. Yang, C. S., Smith, L. L., Arthur, C. V., and Parsons, G. N., J. Vac. Sci. Technol. B, 18 (2), 683 (2000).Google Scholar
6. Smith, P.M., Carey, P.G., and Sigmon, T.W., Appl. Phys. Lett., 70 (3), 342 (1997).Google Scholar
7. Carey, P. G., Smith, P. M., Theiss, S. D., and Wickboldt, P., J. Vac. Sci. Technol., A 17 (4), 1946 (1999).Google Scholar
8. Gosain, D. P., Noguchi, T., and Usui, S., Japanese J. of Appl. Phys. Part 2: Letters, 39, 3AB, L179 (2000).Google Scholar
9. Inoue, S., Utsunomiya, S., Saeki, T., and Shimoda, T., IEEE Trans. on Electron Device, 49 (8), 1353 (2002).Google Scholar
10. Bao, Z., Feng, Y., Dodabalapur, A., Raju, V. R., and Lovinger, A. J., Chem. Mater., 9, (6), 1299 (1997).Google Scholar
11. Drury, C. J., Mutsaers, C.M., Hart, C.M., Matters, M., and Leeuw, D.M., Appl. Phys. Lett., 73, (1), 108 (1998).Google Scholar
12. Kane, M. G., Campi, J., Hammond, M. S., Cuomo, F. P., Greening, B., Sheraw, C.D., Nichols, J. A., Gundlach, D. J., Huang, J. R., Huang, C.-C., Jia, L., Klauk, H., and Jackson, T. N., IEEE Electron Dev. Lett., 21, (11), 534 (2000).Google Scholar
13. Park, S. K., Kim, Y. H., Han, J. I., Moon, D. G., and Kim, W. K., IEEE Trans. on Electron Dev., 49, (11), 2008 (2002).Google Scholar
14. Chen, Y. and Wagner, S., Appl. Phys. Lett., 75, 1125 (1999).Google Scholar
15. Cheng, I.-C. and Wagner, S., Appl. Phys. Lett., 80, 440 (2002).Google Scholar
16. Cheng, I.-C., Wagner, S., Bae, S., and Fonash, S. J., Mater. Res. Soc Symp. Proc. 664, A26.1 (2001).Google Scholar
17. Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H. and Scheib, M., Appl. Phys. Lett., 65 (20), 2588 (1994).Google Scholar
18. Tzolov, M., Finger, F., Carius, R. and Hapke, P., J. Appl. Phys., 81 (11), 7376 (1997).Google Scholar
19. Vallat-Sauvain, E., Kroll, U., Shah, A. and Pohl, J., J. of Appl. Phys., 87 (6), 3137 (2000).Google Scholar
20. Mulato, M., Chen, Y., Wagner, S. and Zanatta, A. R., J.Non-Cryst. Solids, 266269, 1260 (2000).Google Scholar
21. Platz, R. and Wagner, S., Appl. Phys. Lett., 73 (9), 1236 (1998).Google Scholar
22. Alpuim, P., Chu, V., CONDE, and J. P., J. Vac. Sci. Technol. A, 19, 2328 (2001).Google Scholar
23. Koh, J., Ferlauto, A. S., Rovira, P. I., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett., 75 (15), 2286 (1999).Google Scholar
24. Cabarrocas, P. Roca i, Layadi, N., Heitz, T., Drevillon, B., and Solomon, I., Appl. Phys. Lett., 66 (26), 3609 (1995).Google Scholar
25. Dirani, E. A. T., Andrade, A.M., Noda, L. K., Fonseca, F. J., and Santos, P. S., J. Non-Cryst. Solids, 273, 307 (2000).Google Scholar
26. Bailat, J., Vallat-Sauvain, E., Feitknecht, L., Droz, C., and Shah, A., J. Non-Cryst. Solids, 299302, 1219 (2002).Google Scholar