Published online by Cambridge University Press: 21 February 2011
The evolution and distribution of calcium hydroxide, CH, and the development of microstructure during the hydration of three low-calcium fly ash-Portland cement blends with water-solids ratio (w/s) of 0.40 have been investigated. During the first month of hydration, the CH content of the blends was found to be relatively higher than the plain mix, if a dilution effect due to replacement of cement by an inert material is taken into account. After 28 days of hydration the CH content in the blends began to decrease. SEM observations of specimens revealed the occurrence of large, well-crystallized CH plates in intimate contact with some of the fly ash particles at younger ages and even after six months of aging. The study also showed that the chemistry of the pore solution in contact with the hydrating cement system and the characteristics of the fly ashes, such as the glass content and the fineness of the ash particles seem to exert major influences on the rate of evolution of CH in the fly ash blends. Semi-quantitative X-ray diffraction analyses performed on specimens cast against polypropylene plastic plates used to “model coarse aggregates” showed reduction in the thickness of the interfacial zone for the fly ash-Portland cement pastes from about 60μm to less than 15μm within one month of hydration. In the case of the plain Portland cement paste no significant change was observed. The degree of orientation of CH crystals within the interfacial region also was significantly affected by the fly ashes, although by this age of hydration the CH data showed little or no evidence of pozzolanic reaction.