Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T08:40:48.300Z Has data issue: false hasContentIssue false

Evolution of Anisotropic Elastic Strains, and rf/Microwave Dielectric Properties of <110> Textured BST 60/40 Thin Films on <100> NdGaO3 Substrates

Published online by Cambridge University Press:  01 February 2011

W. K. Simon
Affiliation:
Ceramic and Materials Engineering, Rutgers University, Piscataway, New Jersey 08854
E. K. Akdogan
Affiliation:
Ceramic and Materials Engineering, Rutgers University, Piscataway, New Jersey 08854
J. A. Bellotti
Affiliation:
Navy Research Laboratory, Washington D.C., District of Columbia 20375.
A. Safari
Affiliation:
Ceramic and Materials Engineering, Rutgers University, Piscataway, New Jersey 08854
Get access

Abstract

Ba0.60Sr0.40TiO3 thin films were deposited on orthorhombic <100> oriented NdGaO3 substrates by pulsed-laser deposition. Film thickness ranged from 25 nm to 1200 nm. X-ray pole figures have shown consistent <110> textured films with good alignement to the substrate. X-ray strain analysis indicates up to 0.5% compressive strain along the (001) direction, and weaker tensile strain along (-110). Dislocation densities, as computed from strain data, were found to be in the range 5–6×105 cm-1 along both directions. The critical thickness for dislocation formation along (001) and (-110) were found to be 5 and 7 nm, respectively. Permittivity and tunability were investigated using interdigitated capacitors in the 45 MHz-20 GHz range. Dielectric properties and tunability in the <110> oriented films exhibited strong strain and directional properties. Tunability up to 54% was observed at moderate field levels (∼ 5 kV/mm).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Srivastava, A., Kumar, D., Singh, R. K., Venkataraman, H., Eisenstadt, W. R., Phys. Rev. B. 61 (11), 3057307 (2000).Google Scholar
2. Padmini, P., Taylor, T. R., et al., Appl. Phys. Lett. 75(20): 31863188. (1999).Google Scholar
3. Chang, W. T., Gilmore, C. M., et al., J. Appl. Phys. 87(6): 30443049 (2000).Google Scholar
4. Horwitz, J. S., Chang, W. T., et al., J. Electroceramics 4(2–3): 357363 (2000).Google Scholar
5. Xu, J., Menesklou, W., et al., J. European Cer. Soc. 24(6): 17351739 (2004).Google Scholar
6. Gao, H. J., Chen, C. L., et al., Appl. Phys. Lett. 75(17): 25422544 (1999).Google Scholar
7. Cukauskas, E. J., Kirchoefer, S.W., and Chang, W., J. Cryst. Growth 236, 239247 (2002).Google Scholar
8. Chang, W., Kirchoefer, S. W., Pond, J. M., Horowitz, J. S., and Sengupta, L., J. Appl. Phys. 92 (3) 15281535 (2002).Google Scholar
9. Utke, A., Klemenz, C., Scheel, H. J., and Nüesch, P., J. Cryst. Growth 174, 813820 (1997).Google Scholar
10. Alpay, S. P. and Roytburd, A. L., J. Appl. Phys. 83(9): 47144723 (1998).Google Scholar
11. Bellotti, J., Ph.D. Thesis, Rutgers Univeristy (2003).Google Scholar
12. Noyan, I.C. and Cohen, J. B., Residual Stress Springer-Verlag (1987).Google Scholar
13. Imura, T., Weissmann, S., and Slade, J. J., Acta Crystallogr. 15, 786793 (1962).Google Scholar
14. Simon, W. K., Akdogan, E. K., and Safari, A., work unpublished.Google Scholar
15. Gevorgian, S. S., Linner, P. L. J., and Kolberg, E. L., IEEE Trans. Microwave Theory Tech., 44, 896 (1996).Google Scholar
16. Speck, J. S. and Pompe, W., J. Appl. Phys. 76 (1), 466476 (1994).Google Scholar