Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:14:23.189Z Has data issue: false hasContentIssue false

Evolution and Dynamics of Excimer Laser Vaporized YBa2Cu3O7−δ

Published online by Cambridge University Press:  01 January 1992

R. C. Dye
Affiliation:
MS J565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. Brainard
Affiliation:
MS J565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. R. Foltyn
Affiliation:
MS J565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. E. Muenchausen
Affiliation:
MS J565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
X. D. Wu
Affiliation:
MS J565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
N. S. Nogar
Affiliation:
MS J565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Pulsed laser deposition of thin films is a technology whose fundamental processes are often poorly understood. Because of the difficulty of monitoring in real time either the ablation process itself (the laser-solid interaction), or thin film growth (plume-substrate interaction), studies have largely relied on diagnostic studies of the ablated plume and the resulting film to infer details about other steps in the process. Information gained from this approach has helped improve the production of high-temperature superconducting thin films.

We have studied plume dynamics during the in-situ pulsed laser deposition of YBa2Cu3O7−δ thin films. The 248 and 308 nm lines of an excimer laser were used to generate a plume from a bulk YBa2Cu3O7−δ target. Both fast intensified CCD imaging and spectral diagnostics were used to monitor plume dynamics. Variations in the plume distribution as a function of processing gas, pressure, fluence, energy, and spot size were monitored by film composition and spectral-and time-resolved imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cheung, J. T., Sankur, H., CRC Crit. Rev. Sol. St. Mat. Sci., 15, 63 (1988).Google Scholar
2. Sankur, H., Cheung, J. T., Appl. Phys. A, A47, 271 (1988).Google Scholar
3. Ehrlich, D. J., Tsao, J. Y., Laser Microfabrication (Thin Film Processesand Lithography), Eds., Academic Press, Boston, (1989).Google Scholar
4. Narayan, J., Biunno, N., Singh, R., Holland, O. W., Auciello, O., Appl. Phys. Lett., 51, 1845 (1987).Google Scholar
5. Chang, C. C., et al., Appl. Phys. Lett., 53, 517 (1988).Google Scholar
6. Roas, B., Schultz, L., Endres, G., Appl. Phys. Lett., 53, 1557 (1988).Google Scholar
7. Venkatesan, T., et al., IEEE J. Quantum Electron, 25, 2388 (1989).Google Scholar
8. Koren, G., Gupta, A., Giess, E. A., Segmuller, A., Laibowitz, R. B., Appl. Phys. Lett., 54, 1054 (1989).Google Scholar
9. Muenchausen, R. E., et al., Int. Sampe Electron. Conf. 4, 302, 1990.Google Scholar
10. Dijkkamp, D., et al., Appl. Phys. Lett., 51, 619 (1987).Google Scholar
11. Muenchausen, R. E., et al., Appl. Phys. Lett., 56, 578 (1990).Google Scholar
12. Estler, R. C., et al., Mater. Manuf. Processes, 5, 529 (1990).Google Scholar
13. Nogar, N. S., et al., Lecture Notes in Physics, 389 (Laser Ablation: Mech. Appl.), 3, (1991).Google Scholar
14. Venkatesan, T., et al., Appl. Phys. Lett., 53, 1431 (1988).Google Scholar
15. Geohegan, D. B., Mashburn, D. N., Appl. Phys. Lett., 55, 2345 (1989).Google Scholar
16. Estler, R. C., Nogar, N. S., J. Appl. Phys., 69, 1654 (1991).Google Scholar
17. Sakeek, H. F., Morrow, T., Graham, W. G., Walmsley, D. G., Appl. Phys. Lett., 59, 3631 (1991).Google Scholar
18. Kelly, R., Dreyfus, R. W., Nucl. Instrum. Methods Phys. Res., B32, 341 (1988).Google Scholar
19. Finke, B. R., Simon, G., J. Phys. D: Appl. Phys., 23, 67 (1990).Google Scholar
20. Kelly, R., J. Chem. Phys., 92, 5047 (1990).Google Scholar
21. Kelly, R., Braren, B., Gupta, A., Casey, K., Nucl. Instrum. Methods Phys. Res., 65B, 187 (1992).Google Scholar
22. Izumi, H., Ohata, K., Sawada, T., Morishita, T., Tanaka, S., Appl. Phys. Lett., 59, 2950 (1991).Google Scholar
23. Auciello, O., Krauss, A. R., Santiago, A. J., Schreiner, A. F., Gruen, D. M., Appl. Phys. Lett., 52, 239 (1988).Google Scholar
24. Muenchausen, R. E., et al., Nucl. Instrum. Methods Phys. Res., A303, 204 (1991).Google Scholar
25. Dye, R. C., Muenchausen, R. E., Nogar, N. S., Chem. Phys. Lett., 181, 531 (1991).Google Scholar
26. Otis, C. E., Dreyfus, R. W., Phys. Rev. Lett., 67, 2102 (1991).Google Scholar
27. Geohegan, D. B., Appl. Phys. Lett., 60, 2732 (1992).Google Scholar
28. Kools, J. C. S., Brongersma, S. H., Van de Riet, E., Dielemen, J., Appl. Phys. B, B53, 125 (1991).Google Scholar
29. Singh, R. K., Holland, O.W., Narayan, J., J. Appl. Phys., 68, 233 (1990).Google Scholar