Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T21:37:43.388Z Has data issue: false hasContentIssue false

Evidence for localization effects in GaAsSb/InP heterostructures from optical spectroscopy

Published online by Cambridge University Press:  01 February 2011

Houssam Chouaib
Affiliation:
Laboratoire de Physique de la Matière, UMRCNRS 5511 – INSA – Bât Blaise Pascal, 7 avenue Jean Capelle – 69621 Villeurbanne Cedex – France
Catherine Bru-Chevallier
Affiliation:
Laboratoire de Physique de la Matière, UMRCNRS 5511 – INSA – Bât Blaise Pascal, 7 avenue Jean Capelle – 69621 Villeurbanne Cedex – France
Taha Benyattou
Affiliation:
Laboratoire de Physique de la Matière, UMRCNRS 5511 – INSA – Bât Blaise Pascal, 7 avenue Jean Capelle – 69621 Villeurbanne Cedex – France
Hacene Lahreche
Affiliation:
Picogiga – les Ulis - France
Philippe Bove
Affiliation:
Picogiga – les Ulis - France
Get access

Abstract

GaAsSb is a promising material for the base of a new generation of Heterojunction Bipolar Transistors (HBT) on InP, as it is expected to allow the elaboration of high-speed digital circuits (80 to 100 Gbits/s). Emitter-base interfaces between GaAsSb and InP need to be well controlled to ensure good performance of the HBT, and this requires a careful analysis of both material and interface quality. Photoluminescence (PL) experiments as a function of temperature and of power excitation density, as well as photoreflectance (PR) measurements are performed on GaAsSb/InP heterostructures in order to get information about ordering and segregation effects in antimonide alloys.

From the PL recombination energy across the type II interface and at the GaAsSb band-edge, the band offset ΔEC between InP and GaAsSb is calculated. The evolution of the band to band PL recombination is studied as a function of temperature: the energy and intensity of the type I PL transition are shown to exhibit specific behaviors, which are typical of carrier localization effects in semiconductor alloys. At low temperature, the shape of the PR spectrum results in an atypical steplike background, which is analyzed as a band filling effect in consequence of the carrier localization on potential fluctuations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watkins, S.P. et al 10th International conference on Vapor Phase Epitaxy, Sapporo Japan, (2000)Google Scholar
2. Dvorak, M.W., Bolognesi, C.R., Pitts, O.J., Watkins, S.P., IEEE EDL, 22, pp361363 (2001).Google Scholar
3. Peter, M., Herres, N., Fuchs, F., Winkler, K., Bachem, K.H., Wagner, J., Appl. Phys. Lett. 74, p410 (1999).Google Scholar
4. Hu, Xu, X. G., Stotz, J. A. H., Watkins, S. P., Curzon, A. E., and Thewalt., M. L. W., Appl. Phys. Lett. 73, No 19, P 2799 (1998)Google Scholar
5. Street, R.A., Searle, T.M., Austin, I.G., The decay time and temperature dependence of photoluminescence in amorphous As2S3 proceeding of the 5th International conference on Amorphous and Liquid Semiconductors, 1974, II, pp. 953962.Google Scholar
6. M Driessen, F.A.J., Bauhuis, G.J., Olsthoorn, S.M., Giling, L.J Phys. Rev. B, Vol. 48 pp. 78897896. (1993).Google Scholar
7. Grenouillet, L., Bru-Chevallier, C., Guillot, G., Gilet, P., Duvaut, P., Vannuffel, A., Million, A., Chenevas-Paule, A., Appl. Phys. Lett., 76, pp22412243 (2000)Google Scholar
8. Kudrawiec, R., Sek, G., Misiewicz, J., Li, L.H., Harmand, J.C., Appl. Phys. Lett. 83 pp13791381 (2003)Google Scholar
9. Baltagi, Y., Béarzi, E., Bru-Chevallier, C., Benyattou, T., Guillot, G., Harmand, J.C., Mat. Res. Soc. Symp. Proc. 406, pp333338 (1996).Google Scholar