Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:04:23.802Z Has data issue: false hasContentIssue false

Evidence for a Grain Boundary Grooving Model of Agglomeration in Polycrystalline Tisi2 Thin Films

Published online by Cambridge University Press:  25 February 2011

Thomas Nolan
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford CA 94305
Robert Beyers
Affiliation:
IBM-Almaden Research Center, 650 Harry Road, San Jose CA 95020–6099
Robert Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford CA 94305
Get access

Abstract

An equilibrium model for agglomeration based upon the mechanism of grain boundary grooving in polycrystalline thin films is suggested. It involves an energy balance between surface, interface, and grain boundary energies, and predicts parameters which will influence the onset of agglomeration. It has been determined that small grain size, low grain boundary energy, high film surface and interface energies, and growth of single crystal epitaxial layers should promote resistance to agglomeration. Polycrystalline TiSi2 thin films deposited on Si substrates have been observed using cross-section TEM. The micrographs provide evidence that, for these films, the grain boundary grooving mechanism is dominant and most of the modeling assumptions are valid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hung, L. S., Gulai, J., Mayer, J. W., Lau, S. S., and Nicolet, M-A., J. Appl. Phys. 54 (1983).Google Scholar
2. Wong, C. Y., Wang, L. K., McFarland, P. A., and Ting, C. Y., J. Appl. Phys. 60 1 (1986).Google Scholar
3. Yoshida, T., Ogawa, S., Okuda, S., Kouzaki, T., and Tsukamoto, K., Mat. Res. Soc. Symp. Proc 102, (1988).Google Scholar
4. Srolovitz, D. J. and Safran, S. A., J. Appl. Phys. 60, 247 (1986).Google Scholar
5. Chalmers, B., King, R., and Shuttleworth, R., Proc. Roy. Soc. A, 193, 465 (1948).Google Scholar
6. Mullins, W.W., J. Appl. Phys. 28, 333 (1957).Google Scholar
7. Herring, C., Structure and Properties of Solid Surfaces. Eds. Gomer, R. and Smith, C. S. (University of Chicago Press, Chicago, 1952) Ch.1.Google Scholar
8. Nolan, T., Beyers, R., and Sinclair, R., submitted for publication.Google Scholar
9. Rosser, P. J. and Tomkins, G. J., Mat. Res. Soc. Symp. Proc. 35, (1985).Google Scholar
10. Steffen, A., Korec, J. and Balk, P., Thin Solid Films, 138, 235 (1986).Google Scholar
11. Delfino, M., Broadbent, E. K., Morgan, A. E., Burrow, B. J., and Norcott, M. H., IEEE Electron Device Letters, Vol. EDL–6, No. 11 (1985).Google Scholar
12. Ogawa, S. and Yoshida, T., Appl. Phys. Lett, 56 725 (1989).Google Scholar
13. Morgan, A. E., Broadbent, E. K., and Sadana, D. K., Appl. Phys. Lett. 49, 1236 (1986).Google Scholar
14. Lin, T. L., Fathauer, R. W., Grunthaner, P. J., and d'Anterroches, C., Appl. Phys. Lett. 52, 804 (1988).Google Scholar
15 Tung, R. T., J. Vac. Sci. Technol. A7 (3), 598 (1989).Google Scholar
16. Murr, L. E., Interfacial Phenomena in Metals and Allovs, Addison-Wesley, London, (1975).Google Scholar
17. Jones, H., Metal Science Journal, 5, 15 (1971).Google Scholar