Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T02:29:03.043Z Has data issue: false hasContentIssue false

Evaporated Polycrystalline Germanium for Near Infrared Photodetection

Published online by Cambridge University Press:  09 August 2011

L. Colace
Affiliation:
Department of Electronic Engineering, University ‘Roma TRE’ à INFM Via della Vasca Navale, 84 - 1-00146- Rome - Italy
G. Masini
Affiliation:
Department of Electronic Engineering, University ‘Roma TRE’ à INFM Via della Vasca Navale, 84 - 1-00146- Rome - Italy
F. Galluzzi
Affiliation:
Department of Electronic Engineering, University ‘Roma TRE’ à INFM Via della Vasca Navale, 84 - 1-00146- Rome - Italy
G. Assanto
Affiliation:
Department of Electronic Engineering, University ‘Roma TRE’ à INFM Via della Vasca Navale, 84 - 1-00146- Rome - Italy
Get access

Abstract

We present low cost near infrared photodetectors based on polycrystalline Ge film thermally evaporated on a silicon substrate. We demonstrate that, by proper choice of deposition conditions and device configuration, a responsivity of 16mA/W and a response time of a few nanoseconds can be achieved at the wavelength of 1.3micron. The device can operate up to 1.55micron. We also describe the fabrication and the operation of a 16 pixel linear detector array, with pitch of about 100 micron.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearsall, T. P., “Electronic and optical properties of Ge-Si superlattices”, Progr. Quantum Electron. 18, 97,1994.Google Scholar
2. People, R., “Physics and applications of GeSi/Si strained layer heterostructures”, IEEE J. Quantum Electron. 22, 1696, 1986.Google Scholar
3. Presting, H., Kibbel, H., “Buffer concept of ultrathin SiGe superlattices”, Thin Solid Films 222, 215 (1992).Google Scholar
4. Currie, M.T., Samavedam, S.B., Langdo, T.A., Leitz, C.W., Fitzgerald, E.A., “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing”, Appl. Phys. Lett. 72, 1718 (1998).Google Scholar
5. Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Gaspare, L. Di and Evangelisti, F., “Near infrared light detectors based on UHV-CVD epitaxial Ge on Si(100)”, 1997 MRS Fall Meeting, Boston, Dec. 15, 1997.Google Scholar
6. Neuberger, M., ‘Handbook of electronic materials’ (IFIIPlenum Press New York 1971)Google Scholar
7. Evangelisti, F., Garozzo, M. and Conte, G., “Structure of vapor-deposited Ge films as a function of substrate temperature”, J. Appl. Phys. 53, 7390 (1982)Google Scholar
8. Sze, S. M., ‘Physics of Semiconductor Devices, Wiley & Sons, New York (1981)Google Scholar
9. Muller, R.S. and Kamins, T.I., ‘Device Electronics for Integrated Circuits', Wiley & Sons, New York p. 139, (1986)Google Scholar
10. DiGasapare, L., Capellini, G., Chudoba, C., Sebastiani, M. and Evangelisti, F., Appl. Surf. Sci., 104–105, 595 (1996)Google Scholar
11. Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Gaspare, L. Di, Palange, E. and Evangelisti, F., “Metal-Semiconductor-Metal Near Infrared Light Detector Based On Epitaxial Ge/Si”, Appl. Phys. Lett. 72, 3175 (1998)Google Scholar
12. Masini, G., Colace, L., Assanto, G., Pearsall, T. P., “Voltage-tunable near-infrared photodetector: Versatile component for optical communication systems”, J. Vac. Science & Tech. B 16, 2619 (1998)Google Scholar