Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T11:06:10.851Z Has data issue: false hasContentIssue false

Evaluation using A Noncontact Laser Beam Induced Conductivity/Current Method for the Silicon-on-Insulator made by Wafer Bonding

Published online by Cambridge University Press:  03 September 2012

A. Usami
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
T. Nakai
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
H. Fujiwara
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
S. Ishigami
Affiliation:
Mitsubishi Material Co., Ltd., Omiya 330, Japan
T. Wada
Affiliation:
Nagoya Institute of Technology, Nagoya 466, Japan.
K. Matsuki
Affiliation:
DAINIPPON SCREEN Mfg. Co., Ltd, Kyoto 612, Japan
T. Takeuchi
Affiliation:
DAINIPPON SCREEN Mfg. Co., Ltd, Kyoto 612, Japan
Get access

Abstract

In this study, we evaluate the electrical characteristics of the silicon on insulator (SOI) layer made by the wafer bonding method using a photoconductivity modulation method, in other words, noncontact laser beam induced conductivity/current (LBIC) method. The He-Ne laser pulse (λ= 633nm, pulse width=2ms) is used as the carrier-injection light source.

The detected signal intensity decreases at the void area as compared with at the center area of the SOI layer where there are no voids. The positions of the voids revealed by the proposed method are in good agreement with those by X-ray topography. We also measure the lifetime using the photoconductivity decay method using the laser diode. The lifetime at the void area is much shorter than that at the center area. It is considered that the decrease in the detected signal intensity at the void area is due to reduction in the minority carrier lifetime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Maby, E. W., Geis, M. W., LeCoz, Y. L., Silversmith, D. J., Mountain, R. W. and Antoniadis, D. A., IEEE Electron Device Lett., EDL-2, 241 (1981)Google Scholar
[2] Izumi, K., Doken, M. and Ariyoshi, H., Elect ron. Lett 14 593 (1978).Google Scholar
[3] Lam, H. W., Pinizzotto, K. F., Yuan, H. T. and Bellavance, D. w., Electron.Lett. 17 356 (1981)Google Scholar
[4] Lasky, J. B., Appl. Phys. Lett., 48 78 (1986).Google Scholar
[5] Maszara, W. P., J. Electrochem.Sdc., 138 341 (1991).Google Scholar
[6] Maszara, W. P., Goetz, G., Caviglia, A. and McKitterick, J. B., J. Appl. Phys. 64 4943 (1988).Google Scholar
[7] Abe, T., Takei, T., Uchiyama, A., Yoshizawa, K. and Nakazato, Y., Jpn. J. Appl. Phys. 29 L2311 (1990),Google Scholar
[8] Usami, A., Yamada, N., Matsuki, K., Takeuchi, T. and Wada, T., J. Cryst. Growth, 103 179 (1990).Google Scholar
[9] Usami, A., Proc. IEEE Int. Conference on Microelectronic Test Structures, Vol.4 No.1 p. 11 (1991).Google Scholar
[10] Usami, A. and Kushida, T., Oyo Butupi 50 607 (1981) (in Japanese).Google Scholar
[11] Usami, A., Yamada, N., Matsuki, K., Takeuchi, T. and Wada, T. Mat. Res. Soc. Symp., 146 359 (1989).Google Scholar